

INFORME TÉCNICO FINAL

VERIFICACIÓN DE
METODOLOGÍAS PARA
EL ANÁLISIS
MICROBIOLÓGICO EN
CUMPLIMIENTO DE LA
REGLA D2 DEL
CONVENIO BWM

DIRECCIÓN GENERAL MARÍTIMA
CENTRO DE INVESTIGACIONES OCEANOGRÁFICAS E
HIDROGRÁFICAS DEL CARIBE
CARTAGENA DE INDIAS
2023

DIRECTIVOS

Señor Vicealmirante

JOHN FABIO GIRALDO GALLO

Director General Marítimo

Capitán de Navío

JOSÉ ANDRÉS DÍAZ RUIZ

Director CIOH

Capitán Navío (RA)

MARCO ANTONIO OLIER MENDOZA

Jefe sección de Protección del Medio Marino

Proyecto:

"Producir información técnica-científica para PMM en Áreas Marinas y Zonas Portuarias"

PERSONAL PARTICIPANTE

CPS. MARÍA JOSE PLAZA

Bacterióloga

Analista Área microbiología

– Sección Laboratorio -

CIOH

CPS. NINIBETH CORTÉS

Microbióloga

Analista Área microbiología – Sección Laboratorio - CIOH

SUPERVISIÓN

PD 06. KAREN LÓPEZ SUAREZ

Analista Área microbiología – Sección Laboratorio Sede

Caribe - CIOH

PD 08. JOAQUÍN RIVERO HERNÁNDEZ

Responsable Sección Laboratorio Sede Caribe -

CIOH

EDITOR

CPS. WENDY JOHANNA MORENO DÍAZ

Investigador científico -Sección Protección del Medio Marino - CIOH

REVISORES

ASD 12. GISELA MAYO MANCEBO

Responsable Sección Protección del Medio Marino - CIOH

PD 08. LISETH JOHANA ARREGOCÉS SILVA

Investigador científico marino -Sección Protección del Medio Marino – CIOH

CPS SARA ARENAS URIBE

Profesional de apoyo a Protección de Medio Marino
DIMAR - Sede Central

CONTENIDO

1.	. INTRO	DUCCION	6
2.	. МЕТО	DOLOGÍA	8
		lateriales, insumos, equipos e instrumentos empleados para los ensayos de	8
	2.2. N	letodología para el análisis microbiológico en agua de lastre	10
	2.2.1.	Matrices empleadas en la verificación	10
	2.2.2.	Parámetros de desempeño analítico	14
	2.2.3.	Fases de ensayos	16
	2.3. A	seguramiento y controles de calidad del método	21
3.	RESU	LTADOS DE LOS PARÁMETROS DESEMPEÑO ANALÍTICO DE LA VERIFICACIÓN	23
		erificación de la técnica de filtración por Membrana para la determinación de	23
	2.1.1	Estandarización del Inóculo	23
	2.1.2	Límite de detección y límite de cuantificación	24
	2.1.3	Pruebas de rendimiento del método	24
	2.1.4	Precisión	24
	2.1.5	Exactitud	26
		erificación de la técnica de filtración por membrana para la determinación de ocos intestinales en aguas de lastre	28
	2.2.1	Estandarización del Inóculo	28
	2.2.2	Límite de detección y límite de cuantificación	28
	2.2.3	Pruebas de rendimiento del método	28
	2.2.4	Precisión	29
	2.2.5	Exactitud	31
		erificación de la técnica de filtración por membrana para la determinación de Vibrio	
	cholerae	en aguas de lastre	32

	2.3.1	Estandarización del Inóculo	32
	2.3.2	Límite de detección y límite de cuantificación	32
	2.3.3	Pruebas de rendimiento del método	32
	2.3.4	Precisión	33
	2.3.5	Exactitud	35
2	2.4 F	uentes de incertidumbre	36
2	2.5 C	uantificación de la incertidumbre del laboratorio de microbiología	36
4.	CONC	LUSIÓN	37
5.	RECO	MENDACIONES	38
6.	REFE	RENCIAS	39
7.	ANEX	os	43

Lista de Tablas

Tabla 1. Equipos utilizados para los ensayos de verificación	8
Tabla 2. Materiales utilizados para los ensayos de verificación	8
Tabla 3. Reactivos utilizados para los ensayos de verificación	9
Tabla 4. Blancos analíticos empleados en las verificaciones	.11
Tabla 5. Matriz principal de estudio en las verificaciones	.11
Tabla 6. Matrices empleadas en las verificaciones	.12
Tabla 7. Metodologías para determinación de bacterias en aguas de lastre	.17
Tabla 8. Fase I de ensayos de verificación	.18
Tabla 9. Fase II de ensayos de verificación	.19
Tabla 10. Estandarización de los inóculos de trabajo de <i>E. coli</i>	.23
Tabla 11. Características de desempeño del agar CCA para la cuantificación de E. coli	.24
Tabla 12. Precisión intermedia en condiciones de repetibilidad para determinación de E. coli en agua de	
lastre	.25
Tabla 13. Relación entre la repetibilidad y la reproducibilidad en la determinación de E. coli en agua de	
lastre	.26
Tabla 14. Porcentaje de recuperación de E. coli en agua de lastre fortificada	.27
Tabla 15. Estandarización de los inóculos de trabajo de Enterococos	.28
Tabla 16. Características de desempeño del agar Slanetz-Barley Medium ISO para la cuantificación de	
Enterococos	.29
Tabla 17. Precisión intermedia en condiciones de repetibilidad para determinación de Enterococos en	
agua de lastre	.30
Tabla 18. Relación entre la repetibilidad y la reproducibilidad en la determinación de Enterococos en agua	
de lastre	.30
Tabla 19. Porcentaje de recuperación de Enterococos en agua de lastre fortificada	.31
Tabla 20. Estandarización de los inóculos de trabajo de Vibrio cholerae	.32
Tabla 21. Pruebas de rendimiento de agar TCBS para la determinación de Vibrio cholerae	.33
Tabla 22. Precisión intermedia en condiciones de repetibilidad para determinación de Vibrio cholerae en	
agua de lastre	.34
Tabla 23. Relación entre la repetibilidad y la reproducibilidad en la determinación de Vibrio cholerae en	
agua de lastre	.34
Tabla 24. Porcentaje de recuperación de Vibrio cholerae en agua de lastre fortificada	.35
Tabla 25. Cuantificación de la incertidumbre del laboratorio de microbiología – Laboratorio DIMAR Sede	
Cariba	26

Lista de Figuras

Figura 1. Verificación del método de filtración por membrana para la detención de coliformes,
enterococos y Vibrio cholerae en muestras de agua de lastre17
Figura 2. Fuentes de incertidumbre de la verificación de E. coli, Enterococos intestinales y Vibrio
cholerae36
Lista de Anexos
Anexo 1. Límite de detección y cuantificación de <i>E. coli</i> en aguas de lastre
Anexo 2. Resultados de ensayos para determinación de repetibilidad del método de filtración por
membrana para determinación de <i>E. coli</i> 44
Anexo 3. Resultados de ensayos para cálculo de reproducibilidad del método de filtración por membrana
para determinación E. coli
Anexo 4. Cálculos para hallar el criterio de precisión del método de filtración por membrana para la
determinación de <i>E. coli</i> en agua de lastre48
Anexo 5. Resultados y procesamiento de datos para cálculo de incertidumbre para la determinación de
E. coli en agua de lastre
Anexo 6. Límite de detección y cuantificación de Enterococos en aguas de lastre51
Anexo 7. Resultados de ensayos para determinación de repetibilidad del método de filtración por
membrana para determinación de Enterococos
Anexo 8. Resultados de ensayos para cálculo de reproducibilidad del método de filtración por membrana
para determinación de Enterococos
Anexo 9. Cálculos para hallar el criterio de precisión para la determinación de Enterococos en agua de
lastre56
Anexo 10. Resultados y procesamiento de datos para cálculo de incertidumbre para la determinación de
Enterococos en agua de lastre57
Anexo 11. Límite de detección y cuantificación de Vibrio cholerae en aguas de lastre59
Anexo 12. Resultados de ensayos para determinación de repetibilidad del método de filtración por
membrana para determinación de Vibrio choleare
Anexo 13. Resultados de ensayos para cálculo de reproducibilidad del método de filtración por
membrana para determinación de Vibrio cholerae
Anexo 14. Cálculos para hallar el criterio de precisión para la determinación de Vibrio cholerae en agua
de lastre64
Anexo 15. Resultados y procesamiento de datos para cálculo de incertidumbre para la determinación de
Vibrio cholerae en agua de lastre65

1. INTRODUCCIÓN

La Organización Marítima Internacional (OMI) ha identificado dentro de las actividades marítimas, al agua de lastre como un objeto de necesario monitoreo periódico, debido a su potencial riesgo al ambiente marino, gracias a la dispersión accidental de organismos acuáticos y patógenos entre los diferentes ecosistemas oceánicos donde las embarcaciones realicen el recambio de esta agua a lo largo de su navegación. Para este fin, a partir del convenio sobre la gestión del agua de lastre (o Convenio BWM 2004), la OMI ha establecido las directrices para la gestión del agua de lastre dentro de los buques de tráfico internacional registrados en los estados contratantes del convenio, mediante dos directrices denominadas normas D-1 y normas D-2, en estas se clarifican aspectos relacionados al cambio de agua de lastre en aguas oceánicas, la primera hace énfasis a las especificaciones técnicas para el recambio, la segunda establece los límites permitidos para los organismos presentes en el agua de lastre.

Dentro de lo reglamentado, el convenio BWM ha dispuesto que en las embarcaciones se lleve a cabo tratamiento de las aguas de lastre con fines de reducir cargas de especies invasoras. En la regla D-2, se describen los organismos macroscópicos y microorganismos, especialmente los patógenos humanos tales como Vibrio cholerae toxicógeno (O1 y O139), Escherichia coli y Enterococos intestinales (Organización Marítima Internacional, 2020). Cabe resaltar que debido a la abundancia y tolerancia a condiciones de alto estrés ambiental que poseen las bacterias, es probable que su potencial invasor y nocivo, sea mayor que el de otros organismos (Hess-Erga et al., 2019). Debido a esto, se tiene presente una alta rigurosidad en su determinación, la cual es realizada básicamente por métodos de recuento en vivo, que permiten su cuantificación a nivel de laboratorio (Tomaru et al., 2014). Adicional a esto, en la norma D-2 se hace énfasis en realizar análisis en los tanques de agua de lastre, con la finalidad de verificar el óptimo funcionamiento de los sistemas de tratamiento. En esta directriz se han establecido los siguientes límites para las bacterias de alto impacto ambiental y patógeno presentes en las aguas al momento del descargue: Menos de 1 unidad formadora de colonias por 100 mililitros (UFC/100mL) para Vibrio cholerae toxicógeno, menos de 250 UFC/100mL de Escherichia coli y menos de 100 UFC/100mL de enterococos intestinales (Organización Marítima Internacional, 2020).

Teniendo en cuenta que, los análisis realizados en la gestión de las aguas de lastre aportan información clave para la toma de decisiones por parte de las instituciones implicadas en el ejercicio de la autoridad, dentro de las actividades marítimas locales e internacionales (Jung-Hoon et al., 2010), con fines de garantizar resultados de confianza, se ha de cumplir con criterios de robustez, eficiencia y baja variabilidad estadística (Carney et al., 2013), ya que se procesan bajas concentraciones de microorganismos, por ende, un error analítico puede incidir en el veredicto entre un cumplido a la norma o una sanción por falta de aplicación de esta (Reavie et al., 2010). Para este fin, dentro del laboratorio sede Caribe de la DIMAR se realizan los ensayos de laboratorio conforme a lo descrito por la norma ISO/IEC 17025:2017 (ISO & IEC, 2017).

Con base en lo anteriormente expuesto, en el presente documento se describirán los resultados del proceso de verificación de las técnicas utilizadas para el análisis microbiológico del agua de lastre desarrollada en el laboratorio sede Caribe de la DIMAR.

2. METODOLOGÍA

2.1. Materiales, insumos, equipos e instrumentos empleados para los ensayos de verificación

A continuación, van a ser descritos los equipos, reactivos y demás insumos utilizados en los ensayos de verificación. Cabe resaltar que para cada género microbiano estudiado fueron usados de manera concreta tanto cepas de referencia como medios de cultivos específicos.

Tabla 1. Equipos utilizados para los ensayos de verificación

EQUIPOS				
Descripción	Incertidumbre			
Unidades de filtración de 06 puestos de acero inoxidable	N/A			
Bomba de vacío	N/A			
Termocupla	± 0.061 °C			
Incubadora	0.44°C			
Autoclave	1.7 °C / 0.29 psi			
Horno de esterilización	0.70 - 0.72°C			
Cabina de flujo laminar	N/A			
pH metro	± 0.1 (20-25°C)			
Plancha de agitación y calefacción	N/A			
Cuenta colonias	N/A			
Lámpara de luz UV	N/A			
Nevera (Refrigerador)	1.6°C			
Congelador Vertical	2.9°C			

Tabla 2. Materiales utilizados para los ensayos de verificación

Materiales	
Descripción	Incertidumbre
Filtros de membrana: Nitrocelulosa, cuadricula marcada, fondo blanco, poro de 0.45µm, diámetro de 47mm	N/A
Matraz de filtración de 1 L con un brazo lateral y tapón de goma	N/A
Erlenmeyer con salida lateral	N/A
Pinzas punta plana Pinzas lisas de acero inoxidable	N/A
Micropipetas 100 / 1000 μL	0.22 / 0.36 μL

Materiales				
Incertidumbre				
N/A				
± 0.25 mL				
± 0.017 mg				
± 0.053 mg				
± 0.083 mg				
± 0.10 mg				
± 0.17 mg				

Tabla 3. Reactivos utilizados para los ensayos de verificación

T T T T T T T T T T T T T T T T T T T	Reactivos		
Descripción	Concentración	Pureza	Incertidumbre
Agua Peptonada 0,1% / Agua Tamponada de	0.1%	N/A	N/A
dilución	1g/1000mL agua destilada		
Agar coliformes cromogénico (CCA)	26,45 g/L agua destilada	N/A	N/A
Agar Standard Plate Count	23.5g/1000mL agua destilada	N/A	N/A
Agar base OGYE	23.5g/1000mL agua destilada	N/A	N/A
Agar Slanetz-Barley Medium ISO	N/A	N/A	N/A
Agar Bilis Esculina	N/A	N/A	N/A
Agar Base Baird Parker	N/A	N/A	N/A
Agar cetrimide	45.3g/1000mL agua destilada	N/A	N/A
Caldo triptófano	16g/1000mL agua destilada	N/A	N/A
Agar Tiosulfato, citrato, sales biliares, sacarosa (TCBS)	89 g/1000mL agua destilada	N/A	N/A
CHROMagar Vibrio	74.7 g/L	N/A	N/A
Desoxicolato de sodio	1 g/100mL	97%	N/A
Bactident Oxidasa	N/A	N/A	N/A
Cepa Enterococcus faecium ATCC® 35667™*	Crio preservado (caldo BHI 75%)	>99.9%	N/A
Cepa Staphylococcus aureus subsp. aureus ATCC® 25923™*	Crio preservado (caldo BHI 75%)	>99.9%	N/A

	Reactivos		
Descripción	Concentración	Pureza	Incertidumbre
Cepa Pseudomonas aeuriginosa ATCC 27853	Crio preservado (caldo BHI 75%)	>99.9%	N/A
Cepa Escherichia coli ATCC 25922	Crio preservado (caldo BHI 75%)	>99.9%	N/A
Cepa Vibrio cholerae NO 01 (NO 0139 NO Toxico)	N/A	N/A	N/A
Sterikon plus Bioindicator	N/A	N/A	N/A
Agua destilada	N/A	N/A	N/A
Soluciones buffer de pH 4.01	pH 4.01	N/A	0.01
Soluciones buffer de pH 7.00	pH 7.01	N/A	0.01
Soluciones buffer de pH 10.00	pH 10.00	N/A	0.01
Alcohol antiséptico 70°	70%	N/A	N/A
Glicerol	25%	87%	N/A

2.2. Metodología para el análisis microbiológico en agua de lastre

La norma D2 establece como parámetros microbiológicos de determinación en agua de lastre 3 especies bacterianas: *Escherichia coli*, Enterococos intestinales y *Vibrio cholerae*. Metodológicamente, los referentes normativos para la verificación describen condiciones de crecimiento e insumos (medios de cultivo) específicos para cada bacteria. Para el análisis estadístico, se van a llevar a cabo ensayos trasversales organizados en fases para todas las bacterias, donde aplicando la metodología por especie se determinen los parámetros analíticos que permiten verificar el método de filtración por membrana para el análisis microbiológico en muestras de agua de lastre en el laboratorio de la Dirección General Marítima – Dimar – Sede Caribe CIOH.

2.2.1. Matrices empleadas en la verificación

2.2.1.1. Blancos

Estas son aquellas muestras en las cuales no se debe encontrar el organismo en estudio. Para efecto de las verificaciones fueron utilizados dos tipos de blancos:

Tabla 4. Blancos analíticos empleados en las verificaciones

Agua de Lastre Sintétic	a (ALS)	Agua pep	tonada estéril 0.1% (APE)		
Blanco de matriz de es	tudio	Blanco del labora	atorio, este fue considerado como		
		control negativo	pese a que es empleado en los		
		enjuagues	y diluciones de los ensayos		
Filtrados 100 mL e inoculados en	Filtrados 100 mL e inoculados en medios de cultivo selectivos e incubados según el género estudiado:				
E. coli	Enterd	ococos	Vibrio cholerae		
Agar CCA.	Agar Slanetz-Ba	rley Medium ISO.	Agar TCBS		
Incubado 36±2°C y observado a	Incubado a 36	± 2°C por 44 ± 4	Incubado a 36±2°C y observado		
las 21 ± 3 horas	ho	oras	a las 24 horas		
Realizado por cada analista, con un resultado <1 UFC/100mL en todos sus pases					

2.2.1.2. Matrices de estudio

En los ensayos de verificaciones, se tuvieron diferentes matrices de estudio, esto con la finalidad de abarcar diversas variables a nivel estadístico. Cabe resaltar que la matriz objeto de estudio de estos análisis es el agua de lastre (Tabla 5), por ende, las variaciones realizadas partieron de esta misma, bajo condiciones controladas, tal como se aprecia en el agua de lastre fortificada.

Tabla 5. Matriz principal de estudio en las verificaciones

Agua de lastre natural (ALN) Auestreado acorde a lo descrito en la Resolución 477 (Dirección

Matriz principal. Muestreado acorde a lo descrito en la Resolución 477 (Dirección General Marítima, 2012) Por la cual se adoptan y establecen las medidas y el procedimiento de control para verificar la gestión del Agua de Lastre y sedimentos a bordo de naves y artefactos navales nacionales y extranjeros en aguas jurisdiccionales colombianas.

Fueron colectadas las muestras de agua de lastre de un buque que cumplía con las características establecidas, la toma de muestra fue mediante una botella Niskin y luego fue depositada en una botella de vidrio, tapa rosca, estéril de 1000mL, posteriormente filtrados 100 mL e inoculados en medios de cultivo selectivos e incubados según el género estudiado:

E. coli	Enterococos	Vibrio cholerae		
Agar CCA.	Agar Slanetz-Barley	Agar TCBS		
Incubado 36±2°C y	Medium ISO.	Incubado a 36±2°C y		
observado a las 21 ± 3	Incubado a 36 ± 2°C por 44	observado a las 24 horas		
horas	± 4 horas			
Con sus respectivas pruebas confirmatorias de especie bacteriana y tabuladas para determinar				
los criterios de precisión e incertidumbre				

Agua de lastre fortificada (ALF)

Estos son muestras de agua de lastre sintética, a las cuales se les adicionó una concentración conocida del microorganismo de estudio. Esta matriz fue utilizada en el ensayo de repetibilidad y la determinación de la exactitud relativa (porcentaje de recuperación).

Cada una de las matrices utilizadas en todos los ensayos de verificación fueron procesadas con un número total de 14 réplicas (7 veces por cada analista), con la finalidad de brindar la cantidad de datos suficientes para el análisis estadístico, acorde a lo expresado por el Standard Methods (American Public Health Association & American Water Works Association, 2023). Para cada una de las bacterias estudiadas, condensando las cepas de referencia y estudio, y la concentración de inóculo preparada para cada ensayo se encuentran resumidas en la siguiente tabla.

Tabla 6. Matrices empleadas en las verificaciones

Parámetro/	ámetro/ Ensayo de Matriz			
Objetivo	verificación	Matriz	Сера	Concentración bacteriana
Blanco de Matriz	E. coli, Enterococos, V.	Agua de	Agua de lastre sintética	
Blanco de laboratorio		Agua pepto	na estéril (0.1%)	<1UFC/100mL
Criterios de precisión	cholerae	Agua de	Agua de lastre natural	
	E. coli	Agua	<i>E. coli</i> ATCC 25922	1-250 UFC/100mL
Estandarización del inóculo			P. aeruginosa ATCC 27853	
	Enterococos	peptona estéril (0.1%)	Enterococcus faecium ATCC 35667	1-150 UFC/100mL
			Staphylococcus	

*			Y	cas del Galibe
			aureus subsp. aureus ATCC 25923	
	V. cholerae		E. coli ATCC 25922 Vibrio cholerae	1-100 UFC/100mL
Estandarización concentración	E. coli		E. coli ATCC 25922	1-300 UFC/100mL
baja, media y alta. Límite de	Enterococos		Enterococcus faecium ATCC 35667	1-150 UFC/100mL
detección y límite de cuantificación	V. cholerae	Agua de	Vibrio cholerae	1-100 UFC/100mL
Estandarización	E. coli	Lastre Sintética	P. aeruginosa ATCC 27853	1-300 UFC/100mL
concentración baja, media y alta	Enterococos		Staphylococcus aureus subsp. aureus ATCC 25923	1-150 UFC/100mL
	V. cholerae		E.coli ATCC 25922	1-100 UFC/100mL
	E. coli		E. coli ATCC 25922 y Pseudomonas aeruginosa ATCC 27853	1-300 UFC/100mL
Repetibilidad	Enterococos	Agua de Lastre Fortificada	Enterococos faecium ATCC 35667 y Staphylococcus aureus subsp. aureus ATCC 25923	1-150 UFC/100mL
	V. cholerae		Vibrio cholerae y E. coli ATCC 25922	1-100 UFC/100mL
Pruebas de rendimiento, precisión intermedia y Repetibilidad	E. coli		E. coli ATCC 25922 y Pseudomonas aeruginosa ATCC 27853	1-300 UFC/100mL
	Enterococos	Agua de Lastre Natural	Enterococos faecium ATCC 35667 y Staphylococcus aureus subsp. aureus ATCC 25923	1-150 UFC/100mL
	V. cholerae		Vibrio cholerae y E. coli ATCC 25922	1-100 UFC/100mL

2.2.2. Parámetros de desempeño analítico

Los resultados de los ensayos de verificación permiten comprobar estadísticamente la capacidad del laboratorio ejecutar las metodologías que han sido implementadas en sus actividades. A continuación, se van a describir brevemente los parámetros que se tuvieron en cuenta para las verificaciones realizadas en el presente informe (Corporación Autónoma Regional de La Guajira, 2021; Departamento de microbiología, parasitología e inmunología, 2018; Instituto de Salud Pública Chile, 2010):

- <u>Límite de detección:</u> Valor medido (concentración de microorganismos), obtenido mediante un procedimiento de medida dado en la matriz de estudio, con una probabilidad β de que la concentración es mayor en el material analizado que en el material de control (blanco).
- <u>Límite de cuantificación</u>: Se define como la concentración de partículas mínimas promedio por porción analítica, donde la incertidumbre estándar relativa esperada es igual a un valor especificado (RSD). Es el mínimo número de colonias posibles de contar cuantitativamente, el cálculo comparativo es realizado con base en los blancos.
- Intervalo de trabajo: Hace referencia a la estandarización de la menor y mayor concentración de microorganismos en que ha sido demostrado que puede ser determinado su crecimiento con la precisión y la exactitud requeridas para la matriz de estudio.
- Pruebas de rendimiento: Para efectos del presente informe, dentro de las pruebas de rendimiento van a ser analizadas las características de desempeño, que incluye los parámetros necesarios para calcular tasas de falsos positivos y falsos negativos. Dentro de los datos que permiten calcular las tasas y demás características de desempeño se incluyen:
 - Selectividad: Es la capacidad de un método para obtener el analito de interés (especie bacteriana) y eliminar los resultados de los interferentes; en este caso, se pudo observar como el medio de cultivo selectivo tuvo la capacidad para recuperar solo el microorganismo de interés, sin que interfiera el microorganismo interferente, aunque este en una concentración más alta.
 - Especificidad: hace referencia a la capacidad de la prueba de identificar a la

bacteria de estudio en la matriz analizada.

- Sensibilidad: Indica la capacidad de la prueba para determinar la presencia de microorganismo en la muestra de estudio.
- Exactitud relativa: describe el grado de correspondencia entre la respuesta obtenida por un método de referencia y el método alternativo a verificar, en muestras idénticas.
- Precisión: Es el grado de concordancia entre los resultados obtenidos al aplicar el procedimiento analítico repetidas veces bajo condiciones establecidas. Para su estudio se determinan dos condiciones: repetibilidad y reproducibilidad, estos ayudan a identificar desviaciones de mediciones que puedan estar presentando los analistas que lleven a cabo el ensayo (Camaró-Sala et al., 2015; Suarez Algarín, 2020).
 - Repetibilidad: es la medida de la variabilidad en los resultados cuando el método es llevado a cabo por un analista utilizando las mismas condiciones en un corto plazo de tiempo, aplicado a los ensayos realizados, cuanto va a variar el crecimiento microbiano de los diferentes géneros analizados en agua de lastre por una analista realizando la determinación bajo las misma en un intervalo de tiempo corto.
 - Precisión intermedia: Con la finalidad de determinar la variabilidad del método, es analizada una misma muestra dentro del mismo laboratorio, pero en condiciones operativas diferentes, puede ser estudiada en conjunto de factores (INS, 2014).
 - Reproducibilidad: medida de precisión de los datos obtenidas al medir repetidamente una muestra al tiempo que permite o requiere fuentes seleccionadas (instrumento, analista, laboratorio o día) que afecten los resultados.
- <u>Exactitud:</u> En la literatura es definido como el grado de concordancia entre el resultado de una medición y el valor de referencia aceptado. Su estudio implica disponer de un material de referencia frente al que comprobar si existen diferencias estadísticamente significativas entre los valores obtenidos por aplicación del método del laboratorio y el valor de referencia (Camaró-Sala et al., 2015). En microbiología se expresa como el porcentaje de recuperación.
 - Porcentaje de recuperación: en lo aplicable al presente informe, la concentración

de microorganismo en una muestra, entendiendo que existe una cantidad verdadera de bacterias de las cuales el 100% o menos son recuperadas por el detector.

o Incertidumbre: Es el parámetro (no negativo) que caracteriza la dispersión de los valores atribuidos a el valor verdadero de la magnitud. Puede estimarse a partir de la distribución estadística de los resultados de series de medición y pueden caracterizarse por la desviación típica muestral (Menéndez López, 2013).

2.2.3. Fases de ensayos

Para la verificación del método de filtración por membrana para el recuento de los diferentes géneros bacterianos en agua de lastre, se han dispuesto a nivel general, las directrices de los en el procedimiento M5-00-PRO-026 "SELECCIÓN, VALIDACIÓN O VERIFICACIÓN DE MÉTODOS DE ENSAYO Y CÁLCULO DE LA INCERTIDUMBRE DE LA MEDICIÓN" del Sistema de gestión de calidad del laboratorio – CIOH.

Esta metodología se encuentra divida en dos fases, en primer lugar, la estandarización del inoculo (cepa bacteriana) de trabajo, posterior a ellos una segunda fase donde son realizadas pruebas de rendimiento, precisión y exactitud del crecimiento microbiano según el ensayo correspondiente a cada género estudiado, las actividades y parámetros analizados en estas fases, se encuentran descritos en la Figura 1. Las pruebas van a ser aplicadas en cinco (05) tipos de matrices y procesadas por dos analistas del laboratorio (siete [07] veces cada matriz). En cuanto a los microorganismos, los géneros bacterianos establecidos en la D2 son los enterococos, *Escherichia coli*, y *Vibrio cholerae*, en la Tabla 4 están condensadas las normas internacionales que referencian estos ensayos de determinación y la naturaleza estadística del método utilizado.

Figura 1. Verificación del método de filtración por membrana para la detención de coliformes, enterococos y *Vibrio cholerae* en muestras de agua de lastre.

Tabla 7. Metodologías para determinación de bacterias en aguas de lastre

Metodología	Referente de verificación	Tipo de método
Filtración por Membrana, de acuerdo con la norma UNE-EN ISO 7899-2:2000. Empleando el medio de cultivo agar Slanetz-Bartley Medium ISO, para la detección y enumeración Enterococos intestinales en agua de lastre.	International Organization for Standardization (ISO) 2000. ISO 7899- 2:2000 Water quality Detection and enumeration of intestinal enterococci - Part 2: Membrane filtration method	Cuantitativo. Normalizado
Filtración por membrana se realizó a partir del método normalizado. Recuento de <i>Escherichia coli</i> y bacterias coliformes	UNE-EN ISO 9308-1:2014. Recuento de Escherichia coli y bacterias coliformes. Parte 1: Método de filtración por membrana para aguas con bajo contenido de microbiota.	Cuantitativo. Normalizado modificado
Filtración por membrana, para la determinación de Vibrio cholerae en aguas de Lastre, de acuerdo con el método "modificado" 9278 APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. 24th Ed.	APHA, AWWA, WEF. (2023) Standard Methods for the Examination of Water and Wastewater. 24th edition. 9278	Cuantitativo. Normalizado modificado

Con base en lo estandarizado en estas normas, se van a realizar las verificaciones de ensayos de determinación de microorganismo mediante filtración de membrana en muestra de agua de lastre en el Laboratorio de microbiología de la Dirección General Marítima – Dimar Sede Caribe CIOH.

Tabla 8. Fase I de ensayos de verificación

Activ	Actividad		Bacteria			
		E. coli	Enterococos	Vibrio cholerae		
			Activación de cepas			
		Activación de cepas	criopreservada en	Activación de		
		criopreservada en	viales de	cepas		
		viales de <i>E. coli</i>	Enterococos faecium	criopreservada en		
		ATCC 25922, y	ATCC 35667 y	viales de Vibrio		
		Pseudomonas	Staphylococcus	cholerae y E. coli		
	Activación de	aeruginosa ATCC	<i>aureus</i> subsp.	ATCC 25922,		
	cepas	27853, siendo	aureus ATCC	siendo sembradas		
	Сераз	sembradas por	25923, siendo	por agotamiento en		
		agotamiento en	sembradas por	placas de agar de		
		placas de agar de	agotamiento en	Plate count e		
		Plate count e	placas de agar de	incubadas a		
		incubadas a 36±2°C	Plate count e	36±2°C por 18-24		
		por 18-24 horas	incubadas a 36±2°C	horas		
Estandarización del			por 18-24 horas			
inoculo	Verificación de la	Las cepas fueron activadas e incubadas a 36±2°C por 20 horas.				
	precisión en el	Luego, fueron seleccionados 3-5 colonias aisladas mediante un asa				
	ajuste del inóculo	calibrada, siendo sumergidas en 10 mL de agua destilada estéril				
	mediante el patrón	contenidas en un tubo y mezclado homogéneamente, esta				
	de 0.5 de turbidez	preparación era comparada visualmente con el tubo patrón de 0.5 de				
	de McFarland	turbidez de Mc Farlan y era ajustado hasta quedar a la misma				
		turbidez visible.				
		Se realizaron diluciones seriadas por factor de 10, desde 10 ⁻¹ hasta				
			da 0.1% de cada uno de	· ·		
	Estandarización		nte con la finalidad de es			
	del inoculo	• .	uantificación y las concer	•		
			cada una de las bacteria			
			centración estándar para			
	Estimación del		obtenidos y acorde a lo			
	límite de detección		se estable el límite de de	-		
	y límite de		ades formadora de coloni			
	cuantificación	la concentración estándar para el microrganismo evaluado.				

Tabla 9. Fase II de ensayos de verificación

Act	tividad		Bacteria				
		E. coli	Enterococos	Vibrio cholerae			
		Una muestra de 1000 mL de agua de lastre tomada de un buque					
		Enriquecida con E. coli	Enriquecida con <i>E.</i>	Enriquecida con Vibrio			
		(microorganismo	faecium	cholerae			
	Preparación	indicador) en una	(microorganismo	(microorganismo			
	agua de lastre	concentración baja y P.	indicador) en una	indicador) en una			
	fortificada	aeruginosa	concentración baja y S.	concentración baja y E.			
		(microorganismo	aureus (microorganismo	coli (microorganismo			
		interferente) en una	interferente) en una	interferente) en una			
		concentración alta.	concentración alta.	concentración alta.			
		Se	filtraron 100 mL de las mues	tras			
Pruebas de rendimiento del método	Filtración por membrana y siembra		Los filtros fueron colocados en la superficie de agar Slanetz-Barley Medium ISO, posteriormente e incubado a 36 ± 2°C por 44 ± 4 horas. s de crecimiento mencionada nismos son las referidas para Se seleccionaron al azar colonias típicas de Enterococos intestinales para ser aplicadas las	sel método Se seleccionaron al azar colonias típicas de <i>Vibrio choleare</i> para ser aplicadas las pruebas			
	confirmatorias	·	pruebas confirmatorias.	culos de la sensibilidad			
	Cálculos de desempeño	La agrupación de colonias permitió realizar los cálculos de la sensibilidad, especificidad, tasa de falsos positivos, tasa de falsos negativos y eficacia, adicionalmente se clasificaron las colonias en: (I) Verdaderos positivos, (II) Falsos negativos, (III) Falsos positivos, (IV) Verdaderos negativos					
	Cultivo de microrganismos para determinación	En el mismo periodo analítico, fueron filtrados 100 mL de muestras de lastre recolectadas en un buque por cada analista e inoculados en el medio de cultivo especifico por género bacteriano					

P	1			COLOR - PER COLOR SERVICIONES DE CARGO CALIDAD DE SECULIA COLOR DE				
	de repetibilidad		Los filtros fueron					
		Los filtros fueron	colocados en la	Los filtros fueron				
		colocados en la	superficie del agar	colocados en la				
Precisión		superficie del agar CCA.	Slanetz-Barley Medium	superficie del agar CCA				
			ISO					
		Incubado a las condiciones referidas para el método						
	Cálculos para	Se utiliza la desviación está	ndar y el índice de Poisson,	este sigue una distribución				
	determinación	chi-cuadrado, y permite concluir sobre la sobre dispersión de las series. Esto se						
	de repetibilidad		de determinar el grado de la					
	-		g-a					
	Determinación							
	de Precisión	Con el fin de determinar la	proximidad de concordancia	a bajo condiciones que se				
	intermedia –	cambian, se evaluó la pre	ecisión intermedia en términe	os de reproducibilidad, a				
	Reproducibili-	través del procesamiento	de una muestra de lastre n	atural, una muestra con				
	dad	cor	centración, alta, media y ba	ja.				
	intralaboratorio							
		Aplica para métodos cuantitativos, es determinado con la finalidad de leer						
	Criterio de	cada tipo de muestra examinada por cada microorganismo objetivo. Se calculó						
	precisión	realizando 15 réplicas positi	vas, analizados por dos ana	llistas. Se realizó en el				
		intervalo de trabajo establecido en el laboratorio						
		Se requieren muestra	s fortificadas de agua marin	a con inóculos de la				
		concentración baja de las	cepas ATCC/donación como	o valor de referencia y se				
		realizard	n 7 repeticiones por cada a	nalista.				
			Fue empleada la cepa	Fue empleada la cepa				
		Fue empleada la cepa de	de Enterococcus	de Vibrio cholerae				
		E. coli ATCC 25922. Luego	faecium ATCC 35667.	(Donación). Luego se				
	Cultivo para la	se caracterizaron las	Luego se caracterizaron	caracterizaron las				
	determinación	UFC/mL de muestras de	las UFC/mL de muestras	UFC/mL de muestras de				
	del porcentaje	agua de lastre para este	de agua de lastre para	agua de lastre para este				
Exactitud	de recuperación	parámetro sembrando la	este parámetro	parámetro sembrando la				
		muestra y algunas	sembrando la muestra y	muestra y algunas				
		diluciones a partir de estas.	algunas diluciones a	diluciones a partir de				
		andolorioo a partir do cotao.	partir de estas.	estas.				
		Posteriormente fueron incul	-					
		i ostenomiente lueion illeul	normatividad.	occumiento muicado en la				
	Cálculo para							
	determinación	Con base en los resultados	obtenidos, se realiza los cál	culos con los UFC/mL				
	del porcentaje	obtenidos por analista para	a determinar el porcentaje de	e recuperación con la				
	de		siguiente ecuación:					
	ue							

	recuperación	%Recuperación = $\left(\frac{valor\ obtenido}{valor\ de\ referencia}\right) imes 100$
		Se tiene dispuesto un criterio de aceptación de 100±10%
	Cultivo para la	
	determinación	Este parámetro fue obtenido a partir del agua de mar filtrado 7 veces por cada
	de la	analista.
	incertidumbre	
	Cálculos para determinación incertidumbre	Incertidumbre estándar (relativa/expandida): Calcular la varianza relativa de cada par de conteo. Los resultados son expresados con límites absolutos (superior/inferior). Incertidumbre Global Operacional: Resultado de la diferencia de la media de la varianza reproducibilidad intralaboratorio y la media de la variabilidad intrínseca.
	Fuentes de incertidumbre	Para la identificación de las fuentes de incertidumbre y su cuantificación, fue utilizado el formato "Estimación de la incertidumbre en resultados de ensayo - M5-00-FOR-159 para detectar los factores (condiciones ambientales, equipos/procesos, insumos y personal) mediante que afectan el método de los ensayos realizados.

2.3. Aseguramiento y controles de calidad del método

El Sistema de Gestión de Calidad (SGC) del laboratorio DIMAR- Sede Caribe CIOH establece puntos de control críticos dentro de los procedimientos habituales que llevan a cabo en el laboratorio de microbiología, los cuales son trasversales a la especie a determinar o la matriz que esté procesando, a continuación, se exponen los puntos de control de calidad y los códigos de los documentos asociados a ello:

- Control de calidad de las cepas de Trabajo (M5-00-PRO-030).
- Control del medio de cultivo (M5-00-PRO-032): Dentro de los controles que se llevan en los medios de cultivo, se vigilan componentes y características asociadas a los medios de cultivo: control del agua destilada, control de esterilidad (M5-00-PRO-031), ensayo de productividad y selectividad del medio de cultivo (M5-00-PRO-032), prueba de selectividad y eficacia del medio de cultivo.
- Control del filtro de membrana
- Control de equipos
- Control de ambientes y superficies de trabajo (M5-00-PRO-015)
- Control de condiciones ambientales

El cultivo se convirtió en el método de referencia para algunos analitos, por lo tanto, los métodos de cultivo son los que más se utilizan. De igual forma, se reconoce que los métodos convencionales tienen limitaciones, como la reconocida imposibilidad para determinar el valor verdadero de microorganismos viables en una muestra. Además, al ser organismos vivos, la distribución no es uniforme, es heterogénea, caracterizada como una distribución de Poisson.

El propósito de los ensayos microbiológicos está dirigido principalmente a la detección, identificación y/o cuantificación de un microorganismo o conjunto de microorganismos, a nivel de género, especie o serotipo.

Antes de aplicar un método de ensayo, hay que garantizar que se cumplan los requisitos con la evaluación de los atributos analíticos y las características de rendimiento, demostrando que el método es adecuado para el uso previsto en el laboratorio y para cumplir con los requisitos del cliente. Antes de usar un método en el laboratorio y para producir resultados confiables, así como adecuados para el propósito, se requiere su verificación

RESULTADOS DE LOS PARÁMETROS DESEMPEÑO ANALÍTICO DE LA VERIFICACIÓN

A nivel de microbiología, acorde la metodología utilizada para obtener el crecimiento de las bacterias, se asignará la unidad para la expresión de los resultados. En estas verificaciones fueron usados medios de cultivo sólidos donde el crecimiento microbiano es expresado en Unidades Formadoras de Colonias (UFC).

Verificación de la técnica de filtración por Membrana para la determinación de Escherichia coli en aguas de lastre

Estandarización del Inóculo

A partir del ajuste del inóculo mediante el patrón de 0.5 de turbidez de McFarland, fueron realizadas diluciones seriadas por factor de 10 a partir de un inóculo, desde 10⁻¹ hasta 10⁻¹⁰ de cada uno de los microorganismos: *E. coli* ATCC 25922 y *Pseudomonas aeruginosa* ATCC 27853 de forma independiente. El crecimiento obtenido por cada bacteria (UFC) en cada dilución esta expresado en la siguiente tabla:

Tabla 10. Estandarización de los inóculos de trabajo de E. coli

	ANALIS	TA 1	ANALIS	STA 2
DILUCIONES	E. coli	P. aeruginosa	E. coli	P. aeruginosa
-1	*TNTC	TNTC	TNTC	TNTC
-2	TNTC	TNTC	TNTC	TNTC
-3	TNTC	TNTC	TNTC	TNTC
-4	TNTC	TNTC	TNTC	TNTC
-5	TNTC	TNTC	TNTC	TNTC
-6	TNTC	TNTC	TNTC	TNTC
-7	301	303	284	252
-8	79	105	42	117
-9	8	19	16	24
-10	1	3	3	2

^{*}TNTC Demasiado numeroso para contar

Con base a los resultados obtenidos, fueron consideradas las diluciones 10⁻⁷, 10⁻⁸ y 10⁻⁹ como concentraciones de trabajo alta, media y baja, respectivamente, siendo consideradas las soluciones estándar durante el proceso de verificación del método.

Límite de detección y límite de cuantificación

Según los resultados obtenidos en la estandarización del inoculo y la norma ISO 16140-2:2016 se estima que el límite de cuantificación es de 2 unidad formadora de colonia (UFC), y el límite de detección de 1 unidad formadora de colonia (UFC), alcanzado a una dilución de 10⁻¹⁰ para el microrganismo evaluado (*E. coli*) (Anexo 1).

Pruebas de rendimiento del método

Los datos para las características de desempeño del medio de cultivo, donde se calcula la sensibilidad, especificidad, tasa de falsos positivos, tasa de falsos negativos y eficacia (Tabla 11), fueron obtenidos a partir del cultivo del filtro de agua de lastre filtrada, que ha sido enriquecida con microorganismos indicadores (*E. coli*) en una concentración baja (10⁹) y un microorganismo interferente (*P. aeruginosa*) en su concentración alta (10⁷).

Tabla 11. Características de desempeño del agar CCA para la cuantificación de E. coli

PARÁMETROS (%)	E. coli
Sensibilidad	100%
Especificidad	50%
Tasa de Falsos positivos	10%
Tasa de Falsos negativos	0%
Exactitud relativa	91%
Eficiencia	91%
Selectividad	82%

Los resultados de esta verificación indican que este método de cuantificación en agua de lastre es 100% sensible al crecimiento microbiano y 50% específico para la detección de *E. coli,* soportado con una tasa de falsos positivos de 10%, lo que define al medio como específico para este microorganismo (SEIMC, 2013). Así mismo, en cuanto a la eficiencia y exactitud relativa, el resultado obtenido es de 91%, considerado un resultado satisfactorio, puesto que se considera aceptable al tener un valor mayor de 90% (SEIMC, 2013).

Precisión

Los parámetros utilizados para evaluar la precisión del método para efecto de esta verificación: es la repetibilidad y reproducibilidad intralaboratorio.

2.1.4.1 Repetibilidad

De acuerdo con los resultados condensados en la Tabla 12, obtenidos en aqua de lastre y las 3 concentraciones de trabajo, la desviación estándar (SD) es <1 y la tendencia de variabilidad (CV) para ambos analistas y bajo condiciones controladas no supera el 10%, encontrándose dentro del criterio de aceptación (ISO, 2017; Minitab, 2020). Así mismo, se observa que los resultados obtenidos de X2 (Anexo 2), no superaron los valores críticos de la distribución Chi cuadrada, demostrando que la dispersión es significativamente diferente a la establecida en la distribución de Poisson. Tales datos indican la capacidad del método para ser preciso en los resultados que se obtengan de su aplicación en agua de lastre.

Tabla 12. Precisión intermedia en condiciones de repetibilidad para determinación de E. coli en agua de lastre.

PRECISIÓN EN CONDICIONES DE REPETIBILIDAD

	Agua de lastre natural				Concentracio	nes de trabajo		
			A	lta	Media		Baja	
	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2
PROMEDIO	1,423	1,434	2,382	2,375	2,220	2,266	1,424	1,362
SD	0,042	0,049	0,053	0,050	0,010	0,019	0,050	0,047
CV	2,938	3,410	2,222	2,112	0,462	0,846	3,521	3,415

PRECISIÓN INTERMEDIA EN CONDICIONES DE REPETIBILIDAD

		Cond	Concentraciones de trabajo			
	Agua de lastre natural	Alta	Media	Baja		
PROMEDIO	1,428	2,378	2,243	1,393		
SD	0,045	0,052	0,015	0,048		
CV	3,174	2,167	0,654	3,468		

2.1.4.2 Precisión intermedia – Reproducibilidad intralaboratorio

La interpretación de los resultados obtenidos (Anexo 3) en el cálculo de la relación entre la repetibilidad y la reproducibilidad intralaboratorio se da a través de los siguientes criterios:

- Si %R & R < 10% el sistema de medición es aceptable.
- Si 10% ≤ %R & R < 30% el sistema de medición puede ser aceptable según su uso, aplicación, costo del instrumento de medición, costo de reparación.
- Si %R & R > 30% el sistema de medición es considerado como no aceptable y requiere de mejoras en cuanto al operador, equipo, método, condiciones, etc.

Acorde descrito en la Tabla 13 se determina que el método es aceptable según aplicación.

Tabla 13. Relación entre la repetibilidad y la reproducibilidad en la determinación de E. coli en agua de lastre.

RELACIÓN ENTRE LA REPETIBILIDAD Y LA REPRODUCIBILIDAD								
	Agua de lastre			Concentraciones de trabajo				
	natural		Α	lta	Me	edia	Ba	aja
	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2
%Repetibilidad	254	324	116	83	55	35	254	324
%Reproducibilidad	272	272	135	135	47	47	294	294
%R & R	23	24	16	15	10	9	23	25

2.1.4.3 Criterio de precisión

Para la obtención de los datos para el cálculo del criterio de precisión (Anexo 4), fueron procesadas 15 réplicas positivas, analizadas por dos analistas, dentro del intervalo de trabajo establecido en el laboratorio. El valor obtenido para el criterio de precisión es de 0,187 lo que indica baja heterogeneidad del método, lo que lo hace aceptable para su uso en el laboratorio para análisis de agua de lastre.

Exactitud

A nivel de microbiología, la exactitud está expresada en el porcentaje de recuperación junto con la verificación de la incertidumbre que tiene el método utilizado.

2.1.5.1 Porcentaje de recuperación

Fue utilizada como muestra, el agua de lastre fortificada, con inóculo de la cepa de referencia (*E. coli* ATCC 25922) en su concentración baja (10⁹). Conforme en lo descrito en la Tabla 15.

el valor de referencia/valor esperado en las muestras fortificadas corresponden a **27 UFC/mL** con un porcentaje de aceptación que se encuentre entre 90 y 110%.

Tabla 14. Porcentaje de recuperación de E. coli en agua de lastre fortificada.

Repeticiones	EC					
	Analista 1	% recuperación	Analista 2	% recuperación		
1	25	93	29	108		
2	28	104	28	104		
3	29	108	28	104		
4	28	104	27	100		
5	23	85	24	89		
6	24	89	32	119		
7	29	108	23	85		
Promedio	27	99	27	101		

2.1.5.2 Incertidumbre

A nivel microbiológico, la incertidumbre hace referencia a la confidencia en la validez de los resultados obtenidos usando el método microbiológico (Cuella Milián, 2015). Teniendo en cuenta la metodología utilizada para obtener el crecimiento de los microorganismo en el ensayo para la determinación de la incertidumbre, para el recuento en placa de agar, los resultados de los medios de cultivos de utilizados manejan un 95% de confianza obtenida en el método validado (Rodríguez García, 2019), en los datos obtenidos de los ensayos y su procesamiento estadístico (Anexo 5) se obtuvo una incertidumbre estándar 0,065522 junto con una incertidumbre expandida de ±1UFC/mL, datos que califican al método de filtración por membrana como aceptable para su ejecución en los análisis microbiológicos de agua de lastre.

Verificación de la técnica de filtración por membrana para la determinación de Enterococos intestinales en aguas de lastre

Estandarización del Inóculo

A partir del ajuste del inóculo (con el patrón de McFarland), fueron realizadas las diluciones seriadas desde 10⁻¹ hasta 10⁻¹⁰ de cada uno de los microorganismos: *Enterococcus faecium* ATCC 35667 y *Staphylococcus aureus* subsp. *aureus* ATCC 25923 de forma independiente. El crecimiento microbiano (UFC) observado (Tabla 15) permite establecer a las diluciones 10⁻⁷, 10⁻⁸ y 10⁻⁹ como concentraciones de trabajo alta, media y baja.

Tabla 15. Estandarización de los inóculos de trabajo de Enterococos

ANALISTA 1 ANALISTA 2

DILUCIONES	E. faecium	S. aureus	E. faecium	S. aureus
-1	*TNTC	TNTC	TNTC	TNTC
-2	TNTC	TNTC	TNTC	TNTC
-3	TNTC	TNTC	TNTC	TNTC
-4	TNTC	TNTC	TNTC	TNTC
-5	TNTC	TNTC	TNTC	TNTC
-6	TNTC	TNTC	TNTC	TNTC
-7	311	TNTC	345	423
-8	145	188	145	176
-9	16	16	14	13
-10	1	1	3	1

^{*}TNTC Demasiado numeroso para contar.

Límite de detección y límite de cuantificación

A partir de la estandarización del inoculo, y lo dispuesto en la norma ISO 16140-2:2016 se estima que el límite de cuantificación es de 2 unidad formadora de colonia (UFC), y el límite de detección de 1 unidad formadora de colonia (UFC), alcanzado a una dilución de 10⁻¹⁰ para Enterococo intestinal (Anexo 6).

Pruebas de rendimiento del método

Para obtener los resultados que requieren estos parámetros, fue enriquecida agua de lastre natural con *E. faecium* en una concentración baja (10⁹) y *S. aureus* en la concentración alta

(10⁷) como microorganismo interferente, para ser filtradas, luego fueron colocados los filtros en la superficie de Agar Slanetz-Barley Medium ISO. Los datos obtenidos aportan la información necesaria para los cálculos de las características de desempeño del medio de cultivo (sensibilidad, especificidad, tasa de falsos positivos, tasa de falsos negativos y eficacia) (Tabla 16).

Tabla 16. Características de desempeño del agar Slanetz-Barley Medium ISO para la cuantificación de Enterococos

PARÁMETROS (%)	Enterococos intestinales
Sensibilidad	100%
Especificidad	50%
Tasa de Falsos positivos	3%
Tasa de Falsos negativos	0%
Exactitud relativa	97%
Eficiencia	97%
Selectividad	94%

En la anterior tabla, se aprecia que le medio de cultivo Slanetz-Barley Medium ISO, utilizado en la determinación de Enterococos intestinales es 100% sensible al crecimiento microbiano y 50% específico para la detección de enterococos, con una tasa de falsos positivos de 3%, lo que define al medio como específico para este microorganismo; además de una eficiencia y exactitud relativa de 97%, lo que se considera como un resultado satisfactorio, ya que se cataloga como aceptable un valor mayor de 90% (SEIMC, 2013).

Precisión

Los parámetros utilizados para evaluar la precisión del método para efecto de esta verificación: es la repetibilidad, reproducibilidad intralaboratorio y criterio de precisión.

2.2.4.1 Repetibilidad

Conforme en lo condensado en la Tabla 17, la desviación estándar (SD) es <1 y la tendencia de variabilidad (CV) para ambos analistas, bajo condiciones controladas no supera el 10%, encontrándose dentro del criterio de aceptación (ISO, 2017; Minitab, 2020). Tales datos indican la capacidad del método para ser preciso en los resultados que se obtengan de su aplicación en aqua de lastre.

Tabla 17. Precisión intermedia en condiciones de repetibilidad para determinación de Enterococos en agua de lastre

PRECISIÓN EN CONDICIONES DE REPETIBILIDAD

	Agua d	le lastre	Concentraciones de trabajo						
	nat	ural	Alta		Media		Baja		
	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2	
PROMEDIO	1,204	1,213	2,220	2,266	1,788	1,833	1,242	1,154	
SD	0,090	0,107	0,010	0,019	0,028	0,033	0,050	0,070	
cv	7,485	8,798	0,462	0,846	1,562	1,780	4,028	6,094	

PRECISIÓN INTERMEDIA EN CONDICIONES DE REPETIBILIDAD

		Concentraciones de trabajo				
	Agua de lastre natural	Alta	Media	Baja		
PROMEDIO	1,208	2,147	1,810	1,198		
SD	0,098	0,023	0,030	0,060		
CV	8,142	1,088	1,671	5,061		

2.2.4.2 Precisión intermedia – Reproducibilidad intralaboratorio

La interpretación de los resultados obtenidos (Anexo 8) en el cálculo de la relación entre la repetibilidad y la reproducibilidad (intralaboratorio) se da a través de los siguientes criterios:

- Si %R & R < 10% el sistema de medición es aceptable.
- Si 10% ≤ %R & R < 30% el sistema de medición puede ser aceptable según su uso, aplicación, costo del instrumento de medición, costo de reparación.
- Si %R & R > 30% el sistema de medición es considerado como no aceptable y requiere de mejoras en cuanto al operador, equipo, método, condiciones, etc.

Acorde descrito en la Tabla 18 se determina que el método es aceptable según aplicación.

Tabla 18. Relación entre la repetibilidad y la reproducibilidad en la determinación de Enterococos en agua de lastre

RELACIÓN ENTRE LA REPETIBILIDAD Y LA REPRODUCIBILIDAD

		e lastre	Concentraciones de trabajo					
	natural		Alta		Media		Baja	
	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2
%Repetibilidad	254	324	116	83	55	35	254	324
%Reproducibilidad	319	319	275	275	116	116	438	438
%R & R	24	25	20	19	13	12	26	28

2.2.4.3 Criterio de precisión

Con base en los datos obtenidos para el cálculo del criterio de precisión (Anexo 9), se obtuvo un valor de 0,280. Este valor nos indica de baja heterogeneidad y que el método es aceptable para su uso en el laboratorio para análisis de agua de lastre.

Exactitud

A nivel de microbiología, la exactitud está expresada en el porcentaje de recuperación junto con la verificación de la incertidumbre que tiene el método utilizado.

2.2.5.1 Porcentaje de recuperación

Fue utilizada como muestra, el agua de lastre fortificada, con inóculo de la cepa de referencia (*Enterococcus faecium* ATCC *35667*) en su concentración baja (10⁹). Conforme en lo descrito en la Tabla 19. el valor de referencia/valor esperado en las muestras fortificadas corresponden a **17 UFC/mL** con un porcentaje de aceptación que se encuentre entre 90 y 110%.

Tabla 19. Porcentaje de recuperación de Enterococos en agua de lastre fortificada

Repeticiones		EC					
	Analista 1	% recuperación	Analista 2	% recuperación			
1	15	91	10	61			
2	18	109	19	115			
3	12	73	17	103			
4	17	103	19	115			
5	23	139	14	85			
6	14	85	20	121			
7	15	91	18	109			
Promedio	16	99	17	101			

2.2.5.2 Incertidumbre

Los datos obtenidos de los ensayos y su procesamiento estadístico (Anexo 10) indicaron una incertidumbre estándar 0,164759 con un nivel de confianza del 95% y una incertidumbre expandida de ±1UFC/mL, datos que califican al método de filtración por membrana como aceptable para su ejecución en los análisis microbiológicos de agua de lastre.

Verificación de la técnica de filtración por membrana para la determinación de Vibrio cholerae en aguas de lastre

Estandarización del Inóculo

A partir del inóculo ajustado con el patrón McFarland, fueron realizadas las diluciones seriadas (10⁻¹ hasta 10⁻¹⁰) de cada uno de los microorganismos: *Vibrio cholerae* y *E. coli* ATCC 25922. El crecimiento microbiano (UFC) observado (Tabla 20) permite establecer a las diluciones 10⁻⁷, 10⁻⁸ y 10⁻⁹ como concentraciones de trabajo alta, media y baja, respectivamente.

Tabla 20. Estandarización de los inóculos de trabajo de Vibrio cholerae

ANALISTA 1	ANALISTA 2
MINEUTA	AITALIOIAL

DILUCIONES	*V. cholerae	E. coli	V. cholerae	E. coli
-1	**TNTC	TNTC	TNTC	TNTC
-2	TNTC	TNTC	TNTC	TNTC
-3	TNTC	TNTC	TNTC	TNTC
-4	TNTC	TNTC	TNTC	TNTC
-5	TNTC	TNTC	TNTC	TNTC
-6	TNTC	TNTC	TNTC	TNTC
-7	192	301	189	284
-8	43	79	35	42
-9	4	8	17	16
-10	1	1	2	3

^{*}NO 01 / NO 0139 / NO TOXIGENICO

Límite de detección y límite de cuantificación

A partir de la estandarización del inoculo, y la norma ISO 16140-2:2016 se estima que el límite de cuantificación es de 2 unidad formadora de colonia (UFC), y el límite de detección de 1 unidad formadora de colonia (UFC), alcanzado a una dilución de 10⁻¹⁰ para Enterococo intestinal (Anexo 11).

Pruebas de rendimiento del método

Para obtener los resultados que requieren estos parámetros, fue enriquecida agua de lastre natural con *Vibrio cholerae* en una concentración baja (10⁹) y *E. coli* en la concentración alta (10⁷) como microorganismo interferente, para ser filtradas, luego fueron colocados los filtros en la superficie de agar TCBS. Con base en esto resultados fueron calculadas las características

^{**}TNTC Demasiado numeroso para contar

de desempeño del medio de cultivo, que incluyen la sensibilidad, especificidad, tasa de falsos positivos, tasa de falsos negativos y eficacia.

Tabla 21. Pruebas de rendimiento de agar TCBS para la determinación de Vibrio cholerae

PARÁMETROS (%)	Vibrio cholerae
Sensibilidad	100%
Especificidad	50%
Tasa de Falsos positivos	7%
Tasa de Falsos negativos	0%
Exactitud relativa	93%
Eficiencia	93%
Selectividad	87%

En la Tabla 21, se aprecia que le medio de cultivo TCBS, utilizado en la determinación de Enterococos intestinales es 100% sensible al crecimiento microbiano y 50% específico para la detección de enterococos, con una tasa de falsos positivos de 3%, lo que define al medio como específico para este microorganismo; además de una eficiencia y exactitud relativa de 97%, lo que se considera como un resultado satisfactorio, ya que se cataloga como aceptable un valor mayor de 90% (SEIMC, 2013).

Precisión

Los parámetros utilizados para evaluar la precisión del método para efecto de esta verificación: es la repetibilidad, reproducibilidad intralaboratorio y criterio de precisión.

2.3.4.1 Repetibilidad

Conforme en lo condensado en la Tabla 22, la desviación estándar (SD) es <1 y la tendencia de variabilidad (CV) para ambos analistas, bajo condiciones controladas no supera el 10%, encontrándose dentro del criterio de aceptación (ISO, 2017; Minitab, 2020). Tales datos indican la capacidad del método para ser preciso en los resultados que se obtengan de su aplicación en agua de lastre.

Tabla 22. Precisión intermedia en condiciones de repetibilidad para determinación de Vibrio cholerae en agua de lastre

PRECISIÓN EN CONDICIONES DE REPETIBILIDAD

	Agua d	le lastre	Concentraciones de trabajo						
	nat	fural	Alta		Media		Baja		
	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2	
PROMEDIO	1,836	1,841	2,085	2,138	1,418	1,424	1,141	1,168	
SD	0,013	0,010	0,014	0,048	0,060	0,047	0,099	0,094	
CV	0,713	0,516	0,677	2,233	4,224	3,325	8,674	8,067	

PRECISIÓN INTERMEDIA EN CONDICIONES DE REPETIBILIDAD

	Anna da la da matamat	Concentraciones de trabajo				
	Agua de lastre natural	Alta	Media	Baja		
PROMEDIO	1,839	2,111	1,421	1,141		
SD	0,011	0,031	0,054	0,099		
CV	0,615	1,455	3,775	8,674		

2.3.4.2 Precisión intermedia – Reproducibilidad intralaboratorio

La interpretación de los resultados obtenidos (Anexo 13) en el cálculo de la relación entre la repetibilidad y la reproducibilidad (intralaboratorio) se da a través de los siguientes criterios:

- Si %R & R < 10% el sistema de medición es aceptable.
- Si 10% ≤ %R & R < 30% el sistema de medición puede ser aceptable según su uso, aplicación, costo del instrumento de medición, costo de reparación.
- Si %R & R > 30% el sistema de medición es considerado como no aceptable y requiere de mejoras en cuanto al operador, equipo, método, condiciones, etc.

Acorde descrito en la Tabla 23 se determina que el método es aceptable según aplicación.

Tabla 23. Relación entre la repetibilidad y la reproducibilidad en la determinación de Vibrio cholerae en agua de lastre

RELACIÓN ENTRE LA REPETIBILIDAD Y LA REPRODUCIBILIDAD

	Agua d	le lastre	Concentraciones de trabajo					
	natural		Alta		Media		Baja	
	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2	Analista 1	Analista 2
%Repetibilidad	254	324	116	83	55	35	254	324
%Reproducibilidad	136	136	96	96	272	272	414	414
%R & R	20	21	15	13	18	18	26	27

2.3.4.3 Criterio de precisión

Con base en los datos obtenidos para el cálculo del criterio de precisión (Anexo 14), determinándose un valor de 0,248. Este valor nos indica de baja heterogeneidad y que el método es aceptable para su uso en el laboratorio para análisis de agua de lastre.

Exactitud

A nivel de microbiología, la exactitud está expresada en el porcentaje de recuperación junto con la verificación de la incertidumbre que tiene el método utilizado.

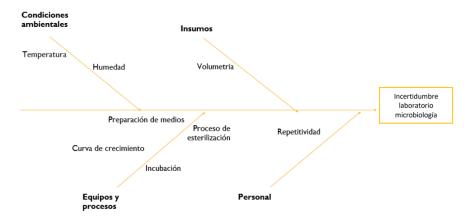
2.3.5.1 Porcentaje de recuperación

Fue utilizada como muestra, el agua de lastre fortificada, con inóculo de la cepa de referencia (*Vibrio cholerae*) en su concentración baja (10⁹). Conforme en lo descrito en la Tabla 24. el valor de referencia/valor esperado en las muestras fortificadas corresponden a **69 UFC/mL** con un porcentaje de aceptación que se encuentre entre 90 y 110%.

Tabla 24. Porcentaje de recuperación de Vibrio cholerae en agua de lastre fortificada

Repeticiones	EC							
	Analista 1	% recuperación	Analista 2	% recuperación				
1	68	99	70	101				
2	71	103	71	103				
3	66	96	71	103				
4	67	97	69	100				
5	67	97	70	101				
6	70	101	68	99				
7	71	103	67	97				
Promedio	69	99	69	101				

2.3.5.2 Incertidumbre


Los datos obtenidos de los ensayos y su procesamiento estadístico (Anexo 15) indicaron una incertidumbre estándar 0,014500 con un nivel de confianza del 95% y una incertidumbre expandida de ±2UFC/mL, datos que califican al método de filtración por membrana como aceptable para su ejecución en los análisis microbiológicos de agua de lastre.

Fuentes de incertidumbre

La incertidumbre puede ser causada a partir de diferentes fuentes, el presupuesto de estas es expresado mediante el diagrama de Ischawa o espina de pescado (Figura 2)

Figura 2. Fuentes de incertidumbre de la verificación de *E. coli*, Enterococos intestinales y *Vibrio cholerae*.

Cuantificación de la incertidumbre del laboratorio de microbiología

Con base en las fuentes de incertidumbre caracterizadas por medio del diagrama de Ischawa, fue establecida la incertidumbre del laboratorio, cuyo valor se considera aceptable para los análisis en estas instalaciones.

Tabla 25. Cuantificación de la incertidumbre del laboratorio de microbiología – Laboratorio DIMAR Sede Caribe.

PROCESO	ENTRADAS	FUENTES	DETALLE	VALOR DEL CERTIFICAD O	DISTRIBUCION ESTADISTICA	INCERTIDUMBRE ESTANDAR (IE)	INCERTIDUMBRE ESTANDAR combinada (IE)	INCERTIDUMBRE expandida Regla1 EURACHEM
			Pesa 20g	0,083	Rectangular	0,03388		
		Balanza	Pesa 5g	0,053	Rectangular	0,02164		
		Dalaliza	Pesa 100 g	0,17	Rectangular	0,06940		
			Balanza	0,0029	Rectangular	0,00118		
			Equipo pHmetro	0,01	Rectangular	0,00408		
		pHmetro	Buffer pH 4	0,01	Rectangular	0,00408		
Alistamiento de	Preparacion de medios de cultivos	primetro	Buffer pH 7	0,01	Rectangular	0,00408		
insumos para el	medios de cultivos		Buffer pH 10	0,01	Rectangular	0,00408		
analisis	[Nevera	4°C •	1,6	Rectangular	0,65320		
	Autoclave	Autoclave temperatura 121°C	0,47	Rectangular	0,19188			
			Autoclave presión 15 PSI	1,7	Rectangular	0,69402		
	Almacenamiento cepa de trabajo	Congelador	-20°C	0,74	Rectangular	0,30210	1,35227	2,70453
		metrica Volumenes medidos	Probeta 25ml	0,25	Triangular	0,10206		
Procesamiento	Volumetrica		Probeta 100ml	0,5	Triangular	0,20412		
muestras			Pipeta de 10 mL	0,075	Triangular	0,03062		
	Temperatura de incubación	Incubadoras	Incubadora 36±2°C	0,44	Rectangular	0,17963		
Condiciones	Temperatura y	Datalogger	80% HR	2	Rectangular	0,81650		
ambientales	humedad	Datalogger	27°C	0,45	Rectangular	0,18371		
Personal		Incertidumbre	calculada con base a los datos reportados en Repetibilidad y Precision intermedia de una muestra	0,002	Normal	0,00082		

CONCLUSIÓN

Conforme a los resultados obtenidos para cada uno de los parámetros de calidad evaluados, el laboratorio DIMAR-Sede Caribe CIOH declara que se cumplieron los objetivos propuestos de la verificación del método mediante la técnica de filtración por membrana para la determinación de los parámetros: enterococos intestinales, *E. coli* y *Vibrio cholerae* en agua de lastre, acorde a lo descrito por la norma D-2 para la gestión de agua de lastre. En prueba de ello, el cumplimiento del criterio de aceptación para los parámetros de verificación evaluados, lo que quiere decir que el personal del laboratorio de microbiología cuenta con la capacidad de procesar estas muestras para los análisis microbiológicos requeridos con precisión. Para este método el laboratorio tiene establecida una incertidumbre de ±2,70 por ende se puede indicar confiabilidad en los resultados obtenidos en este procedimiento.

Cabe resaltar que durante el análisis de los parámetros estadísticos que dan validez a las verificaciones realizadas, se ha encontrado poca literatura disponible comparativa para la matriz analizada (agua de lastre), lo que conllevó a que estas sean ajustadas con criterios objetivamente establecidos dentro del laboratorio acorde a lo expresado por las especificaciones propias para los insumos y equipos utilizados dentro del método, con la finalidad de asegurar la calidad de los resultados obtenidos.

Por último, es necesario resaltar que, en los ensayos realizados para la determinación de *Vibrio cholerae*, se presentó una novedad con relación a la cepa utilizada, ya que esta no se encuentra certificada, puesto que el laboratorio no cuenta con la capacidad de almacenamiento requerida. Por ende, se llevó a cabo el proceso de verificación de gestión de agua de lastre sin confirmación de especie de *V. cholerae* debido a limitaciones de infraestructura. De esto modo, se concluye que la técnica se ha verificado a satisfacción, con la salvedad que las condiciones del centro no son viables para estudiarlas ante un evento.

RECOMENDACIONES

Con base en la experiencia y los resultados obtenidos se establece como primera recomendación tener condiciones necesarias en el centro para que los laboratorios cuenten con la capacidad de almacenar todas las cepas de referencia necesarias para los análisis realizados o en su efecto, realizar acercamientos con las entidades correspondientes (como el Instituto Nacional de Salud) para el análisis de estos microorganismos acorde a lo establecido por la norma.

En segundo lugar, garantizar calibración de equipos y disponibilidad de insumos para los ensayos de verificación con el fin de culminar satisfactoriamente la comprobación del método.

REFERENCIAS

- American Public Health Association, & American Water Works Association. (2023). Standard

 Methods for the Examination of Water and Wastewater (24th ed.). APHA Press.
- Camaró-Sala, M. L., Martínez-García, R., Olmos-Martínez, P., Catalá-Cuenca, V., Ocete-Mochón, M. D., & Gimeno-Cardona, C. (2015). Validación y verificación analítica de los métodos microbiológicos. *Enfermedades Infecciosas Y Microbiología Clínica, 33*(7), e31-e36.
- Carney, K. J., Basurko, O. C., Pazouki, K., Marsham, S., Delany, J. E., Desai, D. V., Anil, A. C.,
 & Mesbahi, E. (2013). Difficulties in obtaining representative samples for compliance with
 the Ballast Water Management Convention. *Marine Pollution Bulletin*, 68(1-2), 99-105.
- Corporación Autónoma Regional de La Guajira. (2021). *Procedimiento control de calidad de datos*
- Cuella Milián, D. A. (2015). Verificación del método para la enumeración y confirmación de Staphylococcus aureus en PetrifilmTM, en el Laboratorio de Microbiología de Alimentos de Zamorano.(Licenciatura).

https://bdigital.zamorano.edu/server/api/core/bitstreams/200328aa-a093-4625-a402-af79c92784e0/content

Departamento de microbiología, parasitología e inmunología. (2018). Seminario 1. Diagnóstico microbiológico

Resolución 477, Resolución U.S.C. (2012). https://www.dimar.mil.co/node/480

- Hess-Erga, O., Moreno-Andrés, J., Enger, Ø, & Vadstein, O. (2019). Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. *Science of the Total Environment*, 657, 704-716. 10.1016/j.scitotenv.2018.12.004
- INS. (2014). Lineamientos técnicos para la estandarizacion y validacion de métodos de ensayo..

 Bogotá: MinSalud.

https://www.saludcapital.gov.co/CTDLab/Publicaciones/2015/Lineamiento%20montaje%20estandarizacion%20y%20validacion.pdf

- Instituto de Salud Pública Chile. (2010). Validación de métodos y determinación de la incertidumbre de la medición.
- ISO. (2017). UNE-EN ISO 13843:2018 Calidad del agua. Requisitos para el establecimiento de las características de funcionamiento de los métodos microbiológicos cuantitativo. (). https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0059793
- ISO, & IEC. (2017). ISO/IEC 17025:2017(es) Requisitos generales para la competencia de los laboratorios de ensayo y calibración
- Jung-Hoon, K., Bong-Gil, H., & Kyoungsoon, S. (2010). Phytoplankton viability in ballast water from international commercial ships berthed at ports in Korea. *Marine Pollution Bulletin*, 60(2), 230-237. https://doi.org/10.1016/j.marpolbul.2009.09.021
- Menéndez López, A. (2013). Validación y cálculo de incertidumbre para la determinación de microorganismos indicadores mediante microbiología clásicas y NMP automatizado, en

matrices cárnicas (Tesis de maestría).

https://digibuo.uniovi.es/dspace/bitstream/handle/10651/17940/TFM_AlejandraVMenendez.pdf;isessionid=2A2071D487CD896E4C71EA3CD7F22038?sequence=6

- Minitab. (2020). Estudio R&R del sistema de medición (cruzado). https://support.minitab.com/es-mx/minitab/media/pdfs/translate/Asistente_Estudio_R_R_del sistema_de_medici%C3%B3n_.pdf
- Organización Marítima Internacional. (2020, *Implantación del Convenio sobre la gestión del agua de lastre*. Organización Martítima Internacional.

 https://www.imo.org/es/MediaCentre/HotTopics/Pages/Implementing-the-BWM-Convention.aspx
- Reavie, E. D., Cangelosi, A. A., & Allinger, L. E. (2010). Assessing ballast water treatments: evaluation of viability methods for ambient freshwater microplankton assemblages. *Journal of Great Lakes Research*, *36*(3), 540-547.
- Rodriguez Garcia, D. M. (2019). Validación de una metodología para la cuantificación de un microorganismo probiótico (Lactobacillus acidophilus La3) en yogur (Tesis de maestría).

 https://bibliotecadigital.udea.edu.co/bitstream/10495/11259/1/RodriguezDiana_2019_ValidacionCuantificacionProbiotico.pdf
- SEIMC. (2013). 48. Validación y verificación analítica de los métodos microbiológicos. In E. Cercenado, & R. Cantón (Eds.), *Procedimientos en Microbiología Clínica* (pp. 1-35). Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica.

Suarez Algarín, C. A. (2020). Determinación de la repetibilidad y reproducibilidad del método ISO 9622 para la determinación del contenido de grasa en leche cruda en interlaboratorio, bajo los lineamientos de la norma NTC 3529-2 (Especialización en Estadística Aplicada). https://repository.libertadores.edu.co/server/api/core/bitstreams/86e2e9a2-b71d-4ed9-bf5f-d42cb26f4faf/content

Tomaru, A., Kawachi, M., Demura, M., & Fukuyo, Y. (2014). Changes in microbial communities, including both uncultured and culturable bacteria, with mid-ocean ballast-water exchange during a voyage from Japan to Australia. *PLoS One*, *9*(5), e96274.

ANEXOS

Anexo 1. Límite de detección y cuantificación de E. coli en aguas de lastre

 $AL + 10^{-10}$

	7. - 1.1							
REPETICIONES	UFC/100ml	Log						
1	3	0,477121255						
2	4	0,602059991						
3	5	0,698970004						
4	5	0,698970004						
5	8	0,903089987						
6	4	0,602059991						
7	4	0,602059991						
8	6	0,77815125						
9	3	0,477121255						
10	7	0,84509804						
11	3	0,477121255						
12	8	0,903089987						
13	4	0,602059991						
14	8	0,903089987						
	PROMEDIO	0,6836						
	SD	0,1604						
	LÍMITE DE DETECCIÓN (LOD)	1						
	LIMITE DE CUANTIFICACIÓN (LOQ)	2						

Anexo 2. Resultados de ensayos para determinación de repetibilidad del método de filtración por membrana para determinación de E. coli.

AGUA DE LASTRE NATURAL

	UFC	UFC	Log ₁₀	Log ₁₀
N° Repeticiones	Analista	Analista	Analista	Analista
	1	2	1	2
1	25	29	1,39794	1,462398
2	28	28	1,447158	1,447158
3	29	28	1,462398	1,447158
4	28	27	1,447158	1,431364
5	23	24	1,361728	1,380211
6	24	32	1,380211	1,50515
7	29	23	1,462398	1,361728
Promedio	27	27		
Varianza	6	9		
Valores X2	1,419	2,031		
Varianza operacional relativa	0,029	0,024		
Repetibilidad	16,950	15,569		
Chi cuadrado 0,05	23,685	23,685		
Chi cuadrado 0,01	29,141	29,141		
	CONCENTRAC	CIÓN ALTA		
N° Repeticiones	UFC	UFC	Log ₁₀	Log ₁₀
	Analista 1	Analista 2	Analista 1	Analista 2
1	223	266	2,348304863	2,424881637
2	281	264	2,44870632	2,421603927
3	288	204	2,459392488	2,309630167
4	234	243	2,369215857	2,385606274
5	228	201	2,357934847	2,303196057
6	207	254	2,315970345	2,404833717
7	235	237	2,371067862	2,374748346
Promedio	242	238		
Varianza	922	711		
Valores X2	22,830	17,891		
Varianza operacional relativa	0,012	0,008		
Repetibilidad	10,760	9,117		
Chi cuadrado 0,05	23,685	23,685		
Chi cuadrado 0,01	29,141	29,141		

CONCENTRACIÓN MEDIA

N° Repeticiones	UFC	UFC	Log ₁₀	Log ₁₀
	Analista 1	Analista 2	Analista 1	Analista 2
1	170	190	2,230448921	2,278753601
2	162	188	2,209515015	2,274157849
3	172	174	2,235528447	2,240549248
4	164	188	2,214843848	2,274157849
5	167	172	2,222716471	2,235528447
6	162	189	2,209515015	2,276461804
7	164	191	2,214843848	2,281033367
Promedio	166	185		
Varianza	15	64		
Valores X2	0,560	2,079		
Varianza operacional relativa	0,005	0,004		
Repetibilidad	7,394	5,950		
Chi cuadrado 0,05	23,685	23,685		
Chi cuadrado 0,01	29,141	29,141		

CONCENTRACIÓN BAJA

UFC	UFC	Log ₁₀	Log ₁₀
Analista 1	Analista 2	Analista 1	Analista 2
28	25	1,447158031	1,397940009
28	22	1,447158031	1,342422681
23	20	1,361727836	1,301029996
29	25	1,462397998	1,397940009
29	25	1,462397998	1,397940009
22	20	1,342422681	1,301029996
28	25	1,447158031	1,397940009
27	23		
9	6		
1,925	1,506		
0,025	0,032		
15,944	17,990		
23,685	23,685		
29,141	29,141		
	28 28 23 29 29 22 28 27 9 1,925 0,025 15,944 23,685	Analista 1 Analista 2 28 25 28 22 23 20 29 25 29 25 29 25 29 25 22 20 28 25 27 23 9 6 1,925 1,506 0,025 0,032 15,944 17,990 23,685 23,685	Analista 1 Analista 2 Analista 1 28 25 1,447158031 28 22 1,447158031 23 20 1,361727836 29 25 1,462397998 29 25 1,462397998 22 20 1,342422681 28 25 1,447158031 27 23 9 6 1,925 1,506 0,025 0,032 15,944 17,990 23,685 23,685

Anexo 3. Resultados de ensayos para cálculo de reproducibilidad del método de filtración por membrana para determinación Escherichia coli.

AGUA DE LASTRE NATURAL

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	25	29	27	8	0,026
2	28	28	28	0	0,036
3	29	28	29	1	0,034
4	28	27	28	1	0,036
5	23	24	24	1	0,042
6	24	32	28	32	0,005
7	29	23	26	18	0,012
				Promedio	0,027
			Rep	producibilidad	0,165
				%	16

CONCENTRACION ALTA

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	223	266	245	925	0,011
2	281	264	273	145	0,002
3	288	204	246	3528	0,054
4	234	243	239	41	0,003
5	228	201	215	365	0,003
6	207	254	231	1105	0,016
7	235	237	236	2	0,004
	1			Promedio	0,014
			Rep	producibilidad	0,116
				%	12

CONCENTRACION MEDIA

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	170	190	180	200	0,001
2	162	188	175	338	0,005
3	172	174	173	2	0,006
4	164	188	176	288	0,004
5	167	172	170	13	0,005
6	162	189	176	365	0,006
7	164	191	178	365	0,006
	1			Promedio	0,005
			Reprod	0,068	
				%	7

CONCENTRACION BAJA

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	28	25	27	5	0,031
2	28	22	25	18	0,011
3	23	20	22	5	0,037
4	29	25	27	8	0,026
5	29	25	27	8	0,026
6	22	20	21	2	0,043
7	28	25	27	5	0,031
	1		I	Promedio	0,029
			Reprod	ucibilidad	0,171
				%	17

Anexo 4. Cálculos para hallar el criterio de precisión del método de filtración por membrana para la determinación de E. coli en agua de lastre.

N° REPETICIONES	Analista 1	Analista 2	Log₁₀ 1	Log₁₀ 2	Rlog	$\overline{R} = \frac{\Sigma \mathcal{R} \log}{n}$	$CP = 3.27 \times \overline{R}$
1	223	266	2,348	2,425	0,077	0,057	0,187
2	281	264	2,449	2,422	0,027		
3	288	204	2,459	2,310	0,150		
4	234	243	2,369	2,386	0,016		
5	228	201	2,358	2,303	0,055		
6	170	190	2,230	2,279	0,048		
7	162	188	2,210	2,274	0,065		
8	172	174	2,236	2,241	0,005		
9	164	188	2,215	2,274	0,059		
10	167	172	2,223	2,236	0,013		
11	28	25	1,447	1,398	0,049		
12	28	22	1,447	1,342	0,105		
13	23	20	1,362	1,301	0,061		
14	29	25	1,462	1,398	0,064		
15	29	25	1,462	1,398	0,064		

CP: Criterio de precisión

Anexo 5. Resultados y procesamiento de datos para cálculo de incertidumbre para la determinación de E. coli en agua de lastre

DATOS OBTENIDOS

			DATOS OBTENIDO	<i>,</i> 3			
REP	ETICIONES		Analista 1	Analista 2			
	1		25	29			
	2		28		28		
	3		29		28		
	4		28		27		
	5		23		24		
	6		24		32		
	7		29		23		
		F	PROCESAMIENTO DE LO	S DATOS			
CORRIDAS	Log ₁₀ (D ₁)	$Log_{10}(D_2)$	$Log_{10}(D_1) - Log_{10}(D_2)$	Valor medio	Dif Rel	(Dif Rel) ²	
1	1,398	1,462	0,064	1,430	0,045	0,002031	
2	1,447	1,447	0,000	1,447	0,000	0,000000	
3	1,462	1,447	0,015	1,455	0,010	0,000110	
4	1,447	1,431	0,016	1,439	0,011	0,000120	
5	1,362	1,380	0,018	1,371	0,013	0,000182	
6	1,380	1,505	0,125	1,443	0,087	0,007500	
7	1,462	1,362	0,101	1,412	0,071	0,005083	
		ESTIMACIO	ÓN DE LA INCERTIDUMB	RE ESTANDAR			
Z/DI	F REL) ² =	0.0	15026	Incertidu	mbre estándar:		
2(01	I KLL) -	0,0	13020	R	$SD_{(PI)} = u$		
DESVIAC	IÓN ESTÁNDAR	0.0	0,032761 u =		0,032	761	
REL	ATIVA (PI) =				,,,,,		
		ESTIMAC	CIÓN DE LA INCERTIDUM				
INCE	RTIDUMBRE		k =	2,0			
	TANDAR:		U =	0,065522	Con un nivel de confianza		
ı	U = K.U					I 95%	
			U _R =	6,552167	Incertidur	mbre relativa	
		1	EXPRESION DEL RESU	LTADO			
	C =		26,929				
	LOG ₁₀ (C) =	1,430					
	IM =		0(c) ± U*Log10(c)				
				LIM INF =	1		
				LIM SUP =	2		
						HEC	
				LIM INF =	22	UFC	
				LIM SUP =	33	UFC	

INCERTIDUMBRE MEDIA OPERACIONAL

Repeticiones	Analista	Analista	Log 1	Log 2	Varianza de reproducibilidad	Variabilidad intrínseca de
	1	2			intralaboratorio	logaritmos comunes
1	25	29	1,398	1,462	0,002	0,007
2	28	28	1,447	1,447	0,000	0,007
3	29	28	1,462	1,447	0,000	0,007
4	28	27	1,447	1,431	0,000	0,007
5	23	24	1,362	1,380	0,000	0,008
6	24	32	1,380	1,505	0,008	0,007
7	29	23	1,462	1,362	0,005	0,007
8	223	266	2,348	2,425	0,003	0,001
9	281	264	2,449	2,422	0,000	0,001
10	288	204	2,459	2,310	0,011	0,001
11	234	243	2,369	2,386	0,000	0,001
12	228	201	2,358	2,303	0,001	0,001
13	207	254	2,316	2,405	0,004	0,001
14	235	237	2,371	2,375	0,000	0,001
15	170	190	2,230	2,279	0,001	0,001
16	162	188	2,210	2,274	0,002	0,001
17	172	174	2,236	2,241	0,000	0,001
18	164	188	2,215	2,274	0,002	0,001
19	167	172	2,223	2,236	0,000	0,001
20	162	189	2,210	2,276	0,002	0,001
21	164	191	2,215	2,281	0,002	0,001
22	28	25	1,447	1,398	0,001	0,007
23	28	22	1,447	1,342	0,005	0,008
24	23	20	1,362	1,301	0,002	0,009
25	29	25	1,462	1,398	0,002	0,007
26	29	25	1,462	1,398	0,002	0,007
27	22	20	1,342	1,301	0,001	0,009
28	28	25	1,447	1,398	0,001	0,007
			Pro	medio	0,002	0,004

Anexo 6. Límite de detección y cuantificación de Enterococos en aguas de lastre

 $AL + 10^{-10}$

REPETICIONES	UFC/100ml	Log
1	3	0
2	4	0,301029996
3	5	0
4	5	0,301029996
5	8	0,301029996
6	4	0,301029996
7	4	0
8	6	0,301029996
9	3	0
10	7	0
11	3	0,301029996
12	8	0,301029996
13	4	0
14	8	0,301029996
	PROMEDIO	0,6836
	SD	0,1604
	LÍMITE DE DETECCIÓN (LOD)	1
	LIMITE DE CUANTIFICACIÓN (LOQ)	2

Anexo 7. Resultados de ensayos para determinación de repetibilidad del método de filtración por membrana para determinación de Enterococos.

AGUA DE LASTRE NATURAL

N° Repeticiones	UFC	UFC	Log ₁₀	Log ₁₀
	Analista 1	Analista 2	Analista 1	Analista 2
1	15	10	1,176091	1
2	18	19	1,255273	1,278754
3	12	17	1,079181	1,230449
4	17	19	1,230449	1,278754
5	23	14	1,361728	1,146128
6	14	20	1,146128	1,30103
7	15	18	1,176091	1,255273
Promedio	16	17		
Varianza	13	13		
Valores X2	4,632	4,513		
Varianza operacional relativa	0,014	0,015		
Repetibilidad	11,834	12,178		
Chi cuadrado 0,05	23,685	23,685		
Chi cuadrado 0,01	29,141	29,141		
	CONCENTRA	ACIÓN ALTA		
N° Repeticiones	UFC	UFC	Log ₁₀	Log ₁₀
	Analista 1	Analista 2	Analista 1	Analista 2
1	145	125	2,161368002	2,096910013
2	158	130	2,198657087	2,113943352
3	168	121	2,225309282	2,08278537
4	157	115	2,195899652	2,06069784
5	166	125	2,220108088	2,096910013
6	159	135	2,201397124	2,130333768
7	164	116	2,214843848	2,064457989
Promedio	160	124		
Varianza	59	52		
Valores X2	2,217	2,526		
Varianza operacional relativa	0,004	0,005		
Repetibilidad	6,286	6,837		
Chi cuadrado 0,05	23,685	23,685		
,		-,		
Chi cuadrado 0,01	29,141	29,141		

CONCENTRACIÓN MEDIA

N° Repeticiones	UFC	UFC	Log ₁₀	Log ₁₀
	Analista 1	Analista 2	Analista 1	Analista 2
1	66	66	1,819543936	1,819543936
2	60	60	1,77815125	1,77815125
3	63	70	1,799340549	1,84509804
4	60	77	1,77815125	1,886490725
5	55	67	1,740362689	1,826074803
6	60	68	1,77815125	1,832508913
7	66	70	1,819543936	1,84509804
Promedio	61	68		
Varianza	15	26		
Valores X2	1,493	2,305		
Varianza operacional relativa	0,012	0,009		
Repetibilidad	11,058	9,496		
Chi cuadrado 0,05	23,685	23,685		
Chi cuadrado 0,01	29,141	29,141		
	CONCENTRA	NCIÓN BA IA		
N° Repeticiones	UFC	UFC	Log ₁₀	Log ₁₀
N Nepeuciones	Analista 1	Analista 2	Analista 1	Analista 2
1	14	16	1,146128036	1,204119983
2	18	11	1,255272505	1,041392685
3	16	16	1,204119983	1,204119983
4	19	12	1,278753601	1,079181246
5	18	17		
6			1,255272505	1,230448921
7	19	14	1,278753601	1,146128036
	19	15	1,278753601	1,176091259
Promedio	18	14		
Varianza	4	5		
Valores X2	1,236	2,059		
Varianza operacional relativa	0,045	0,046		
Repetibilidad	21,258	21,335		
Chi cuadrado 0,05	23,685	23,685		
Chi cuadrado 0,01	29,141	29,141		

Anexo 8. Resultados de ensayos para cálculo de reproducibilidad del método de filtración por membrana para determinación de Enterococos

AGUA DE LASTRE NATURAL

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	15	10	13	13	0,000
2	18	19	19	1	0,053
3	12	17	15	13	0,010
4	17	19	18	2	0,049
5	23	14	19	41	0,064
6	14	20	17	18	0,003
7	15	18	17	5	0,044
	I			Promedio	0,032
			I	Reproducibilidad	0,179
				%	18
		CONCENTRACIÓ	54. A. TA		1

CONCENTRACIÓN ALTA

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	145	125	135	200	0,004
2	158	130	144	392	0,012
3	168	121	145	1105	0,046
4	157	115	136	882	0,040
5	166	125	146	841	0,033
6	159	135	147	288	0,007
7	164	116	140	1152	0,052
	1			Promedio	0,028
			Rep	oroducibilidad	0,166
				%	17

CONCENTRACIÓN MEDIA

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	66	66	66	0	0,015
2	60	60	60	0	0,017
3	63	70	67	25	0,009
4	60	77	69	145	0,016
5	55	67	61	72	0,003
6	60	68	64	32	0,008
7	66	70	68	8	0,013
·				Promedio	0,012
			Re	producibilidad	0,108
				%	11

CONCENTRACIÓN BAJA

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	14	16	15	2	0,058
2	18	11	15	25	0,048
3	16	16	16	0	0,063
4	19	12	16	25	0,037
5	18	17	18	1	0,056
6	19	14	17	13	0,015
7	19	15	17	8	0,031
	1			Promedio	0,044
			Rep	producibilidad	0,209
				%	21

Anexo 9. Cálculos para hallar el criterio de precisión para la determinación de Enterococos en agua de lastre.

N° REPETICIONES	Analista 1	Analista 2	Log ₁₀ 1	Log₁₀ 2	Rlog	$\overline{R} = \frac{\Sigma \mathcal{R} \log}{n}$	$CP = 3.27 \times \overline{R}$
1	145	125	2,161	2,097	0,064	0,086	0,280
2	158	130	2,199	2,114	0,085		
3	168	121	2,225	2,083	0,143		
4	157	115	2,196	2,061	0,135		
5	166	125	2,220	2,097	0,123		
6	66	66	1,820	1,820	0,000		
7	60	60	1,778	1,778	0,000		
8	63	70	1,799	1,845	0,046		
9	60	77	1,778	1,886	0,108		
10	55	67	1,740	1,826	0,086		
11	14	16	1,146	1,204	0,058		
12	18	11	1,255	1,041	0,214		
13	16	16	1,204	1,204	0,000		
14	19	12	1,279	1,079	0,200		
15	18	17	1,255	1,230	0,025		

CP: Criterio de precisión

Anexo 10. Resultados y procesamiento de datos para cálculo de incertidumbre para la determinación de Enterococos en agua de lastre

DATOS OBTENIDOS

REP	ETICIONES		Analista 1		Analista	2	
	1		15		10		
	2		18	18			
	3		12		17		
	4		17		19		
	5		23		14		
	6		14		20		
	7		15		18		
		P	ROCESAMIENTO DE LO	S DATOS			
CORRIDAS	Log ₁₀ (D ₁)	$Log_{10}(D_2)$	$Log_{10}(D_1) - Log_{10}(D_2)$	Valor medio	Dif Rel	(Dif Rel) ²	
1	1,176	1,000	0,176	1,088	0,162	0,026193	
2	1,255	1,279	0,023	1,267	0,019	0,000343	
3	1,079	1,230	0,151	1,155	0,131	0,017158	
4	1,230	1,279	0,048	1,255	0,039	0,001482	
5	1,362	1,146	0,216	1,254	0,172	0,029563	
6	1,146	1,301	0,155	1,224	0,127	0,016027	
7	1,176	1,255	0,079	1,216	0,065	0,004242	
		ESTIMACIÓ	N DE LA INCERTIDUMB	RE ESTANDAR			
Σ(DI	F REL) ² =	0,09	5009	Incertidum	bre estándar:	'	
				RS	$RSD_{(PI)} = u$		
	IÓN ESTÁNDAR	0,08	2379	0,082379 u =			
REL	ATIVA (PI) =						
		ESTIMAC	IÓN DE LA INCERTIDUM				
INCE	RTIDUMBRE		k =	2,0			
ES	TÁNDAR:		U =	0,164759 Con un nivel de confi			
1	U = K.U			40 475070		95%	
			$U_R =$ EXPRESIÓN DEL RESU	16,475879	Incertiaur	mbre relativa	
	C =	I	16,500	LIADO			
	-		1,217				
	$LOG_{10}(C) =$		1,217				
	IM =	Log10	(c) ± U*Log10(c)				
				LIM INF =	1		
				LIM SUP =	2		
				LIM SUP =	10	UFC	
						UFC UFC	

INCERTIDUMBRE MEDIA OPERACIONAL

Repeticiones	Analista	Analista	Log 1	Log 2	Varianza de reproducibilidad	Variabilidad intrínseca de
	1	2			intralaboratorio	logaritmos comunes
1	15	10	1,176	1,000	0,016	0,015
2	18	19	1,255	1,279	0,000	0,010
3	12	17	1,079	1,230	0,011	0,013
4	17	19	1,230	1,279	0,001	0,010
5	23	14	1,362	1,146	0,023	0,010
6	14	20	1,146	1,301	0,012	0,011
7	15	18	1,176	1,255	0,003	0,011
8	145	125	2,161	2,097	0,002	0,001
9	158	130	2,199	2,114	0,004	0,001
10	168	121	2,225	2,083	0,010	0,001
11	157	115	2,196	2,061	0,009	0,001
12	166	125	2,220	2,097	0,008	0,001
13	159	135	2,201	2,130	0,003	0,001
14	164	116	2,215	2,064	0,011	0,001
15	66	66	1,820	1,820	0,000	0,003
16	60	60	1,778	1,778	0,000	0,003
17	63	70	1,799	1,845	0,001	0,003
18	60	77	1,778	1,886	0,006	0,003
19	55	67	1,740	1,826	0,004	0,003
20	60	68	1,778	1,833	0,001	0,003
21	66	70	1,820	1,845	0,000	0,003
22	14	16	1,146	1,204	0,002	0,013
23	18	11	1,255	1,041	0,023	0,013
24	16	16	1,204	1,204	0,000	0,012
25	19	12	1,279	1,079	0,020	0,012
26	18	17	1,255	1,230	0,000	0,011
27	19	14	1,279	1,146	0,009	0,011
28	19	15	1,279	1,176	0,005	0,011
			Pro	medio	0,007	0,007
	Inc	ertidumbre n	nedia opera	cional	0,00	03

Anexo 11. Límite de detección y cuantificación de Vibrio cholerae en aguas de lastre

 $AL + 10^{-10}$

	ALTIV	
REPETICIONES	UFC/100ml	Log
1	3	0
2	4	0
3	5	0,301029996
4	5	0,477121255
5	8	0,301029996
6	4	0,477121255
7	4	0,301029996
8	6	0,477121255
9	3	0,602059991
10	7	0,698970004
11	3	0,301029996
12	8	0,477121255
13	4	0,477121255
14	8	0,301029996
	PROMEDIO	0,6836
	SD	0,1604
	LÍMITE DE DETECCIÓN (LOD)	1
	LIMITE DE CUANTIFICACIÓN (LOQ)	2

Anexo 12. Resultados de ensayos para determinación de repetibilidad del método de filtración por membrana para determinación de Vibrio choleare.

AGUA DE LASTRE NATURAL

	UFC	UFC	Log ₁₀	Log ₁₀				
N° Repeticiones	Analista 1	Analista 2	Analista 1	Analista 2				
1	68	70	1,832509	1,845098				
2	71	70	1,851258					
				1,851258				
3	66	71	1,819544	1,851258				
4	67	69	1,826075	1,838849				
5	67	70	1,826075	1,845098				
6	70	68	1,845098	1,832509				
7	71	67	1,851258	1,826075				
Promedio	69	69						
Varianza	4	2						
Valores X2	0,375	0,198						
Varianza operacional relativa	0,014	0,014						
Repetibilidad	11,693	11,802						
Chi cuadrado 0,05	23,685	23,685						
Chi cuadrado 0,01	29,141	29,141						
CONCENTRACIÓN ALTA								
N° Repeticiones	UFC	UFC	Log ₁₀	Log ₁₀				
	Analista 1	Analista 2	Analista 1	Analista 2				
1	122	145	2,086359831	2,161368002				
2	125	164	2,096910013	2,214843848				
3	125	143	2,096910013	2,155336037				
4	125	137	2,096910013	2,136720567				
5	118	120	2,071882007	2,079181246				
6	121	120	2,08278537	2,079181246				
7	115	138	2,06069784	2,139879086				
Promedio	122	138						
Varianza	15	233						
Valores X2	0,754	10,126						
Varianza operacional relativa	0,007	0,005						
Repetibilidad	8,480	7,056						
Chi cuadrado 0,05	23,685	23,685						
Chi cuadrado 0,01	29,141	29,141						

Dirección General Marítima Autoridad Marítima Colombiana

Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe

CONCENTRACIÓN MEDIA							
	UFC	UFC	Log ₁₀	Log ₁₀			
N° Repeticiones	Analista	Analista	Analista	Analista			
	1	2	1	2			
1	68	70	1,832509	1,845098			
2	71	71	1,851258	1,851258			
3	66	71	1,819544	1,851258			
4	67	69	1,826075	1,838849			
5	67	70	1,826075	1,845098			
6	70	68	1,845098	1,832509			
7	71	67	1,851258	1,826075			
Promedio	69	69					
Varianza	4	2					
Valores X2	0,375	0,198					

0,014 0,014 Varianza operacional relativa 11,693 11,802 Repetibilidad Chi cuadrado 0,05 23,685 23,685 29,141 29,141

Chi cuadrado 0,01

Chi cuadrado 0,01

CONCENTRACIÓN BAJA							
N° Repeticiones	UFC	UFC	Log ₁₀	Log ₁₀			
	Analista 1	Analista 2	Analista 1	Analista 2			
1	15	20	1,176091259	1,301029996			
2	14	10	1,146128036	1			
3	10	14	1	1,146128036			
4	11	13	1,041392685	1,113943352			
5	13	16	1,113943352	1,204119983			
6	17	16	1,230448921	1,204119983			
7	19	16	1,278753601	1,204119983			
Promedio	14	15					
Varianza	10	10					
Valores X2	4,303	3,867					
Varianza operacional relativa	0,020	0,024					
Repetibilidad	14,141	15,396					
Chi cuadrado 0,05	23,685	23,685					

29,141

29,141

Anexo 13. Resultados de ensayos para cálculo de reproducibilidad del método de filtración por membrana para determinación de Vibrio cholerae

AGUA DE LASTRE NATURAL

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	68	70	69	2	0,014
2	71	71	71	0	0,014
3	66	71	69	13	0,012
4	67	69	68	2	0,014
5	67	70	69	5	0,014
6	70	68	69	2	0,014
7	71	67	69	8	0,013
	I			Promedio	0,014
			Re	producibilidad	0,116
			.	%	12

CONCENTRACIÓN ALTA

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	122	145	134	265	0,007
2	125	164	145	761	0,030
3	125	143	134	162	0,002
4	125	137	131	72	0,003
5	118	120	119	2	0,008
6	121	120	121	1	0,008
7	115	138	127	265	0,009
	1			Promedio	0,010
			Rep	producibilidad	0,098
				%	10

CONCENTRACIÓN MEDIA

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	27	24	26	5	0,032
2	29	27	28	2	0,033
3	33	28	31	13	0,019
4	26	32	29	18	0,013
5	25	24	25	1	0,040
6	23	24	24	1	0,042
7	22	28	25	18	0,011
	I			Promedio	0.027
			ı	Reproducibilidad	0,165
		00110511551011	,	%	17

CONCENTRACIÓN BAJA

N° Repeticiones	Analista 1	Analista 2	Promedio	Varianza	Varianza Operacional Relativa
1	15	20	18	13	0,016
2	14	10	12	8	0,028
3	10	14	12	8	0,028
4	11	13	12	2	0,069
5	13	16	15	5	0,048
6	17	16	17	1	0,059
7	19	16	18	5	0,042
	ı			Promedio	0,041
			Rep	producibilidad	0,204
				%	20

Anexo 14. Cálculos para hallar el criterio de precisión para la determinación de Vibrio cholerae en agua de lastre

N° REPETICIONES	Analista 1	Analista 2	Log ₁₀	Log₁₀ 2	Rlog	$\overline{R} = \frac{\Sigma \mathcal{R} \log}{n}$	$CP = 3.27 \times \overline{R}$
1	122	145	2,086	2,161	0,075	0,076	0,248
2	125	164	2,097	2,215	0,118		
3	125	143	2,097	2,155	0,058		
4	125	137	2,097	2,137	0,040		
5	118	120	2,072	2,079	0,007		
6	27	24	1,431	1,380	0,051		
7	29	27	1,462	1,431	0,031		
8	33	28	1,519	1,447	0,071		
9	26	32	1,415	1,505	0,090		
10	25	24	1,398	1,380	0,018		
11	15	20	1,176	1,301	0,125		
12	14	10	1,146	1,000	0,146		
13	10	14	1,000	1,146	0,146		
14	11	13	1,041	1,114	0,073		
15	13	16	1,114	1,204	0,090		

CP: Criterio de precisión

Anexo 15. Resultados y procesamiento de datos para cálculo de incertidumbre para la determinación de Vibrio cholerae en agua de lastre

DATOS OBTENIDOS

REPETICIONES				2,1100021211120				
2 71 71 71 3 66 71 4 67 69 5 67 70 68 70 68 7 71 67	REP	ETICIONES		Analista 1		Analista	2	
3 66 71 4 67 69 5 67 70 6 70 68 77 71 67		1		68	70			
4 67 69 5 67 70 68 77 71 68 77 71 68 77 71 67 ***PROCESAMIENTO DE LOS DATOS** ***CORRIDAS** Log₁₀(D₁) Log₁₀(D₂) Log₁₀(D₂) Valor medio Dif Rel (Dif Rel)² 1 1,833 1,845 0,013 1,839 0,007 0,000047 2 1,851 1,851 0,000 1,851 0,000 0,00000 3 1,820 1,851 0,032 1,835 0,017 0,00029 4 1,826 1,839 0,013 1,832 0,017 0,00029 5 1,826 1,845 0,019 1,836 0,010 0,00107 6 1,845 1,833 0,013 1,839 0,007 0,00047 7 1,851 1,826 0,025 1,839 0,014 0,000188 ***ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR** RELATIVA ⟨⟨⟨⟨⟩⟩⟩ = ***DESVIACIÓN ESTÁNDAR** RELATIVA ⟨⟨⟨⟩⟩⟩ = ***DESVIACIÓN ESTÁNDAR** RELATIVA ⟨⟨⟨⟩⟩⟩ = ***DESVIACIÓN ESTÁNDAR** U = 0,164759		2		71	71			
S		3		66	71			
Form Fraction F		4		67		69		
T		5		67		70		
PROCESAMIENTO DE LOS DATOS		6		70		68		
CORRIDAS Log ₁₀ (D ₁) Log ₁₀ (D ₂) Log ₁₀ (D ₁) - Log ₁₀ (D ₂) Valor medio Dif Rel (Dif Rel) ² 1 1,833 1,845 0,013 1,839 0,007 0,000000 2 1,851 1,851 0,000 1,851 0,000 0,000000 3 1,820 1,851 0,032 1,835 0,017 0,000299 4 1,826 1,839 0,013 1,832 0,007 0,000049 5 1,826 1,845 0,019 1,836 0,010 0,000107 6 1,845 1,833 0,013 1,839 0,007 0,000047 ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR ESTIMACIÓN DE LA INCERTIDUMBRE EXPANDIDA k = 2,0 EXPRESIÓN DEL RESULTADO U = K.U EXPRESIÓN DEL RESULTADO Con un nivel de confianza del 95% U = 1,4550041 LOG ₁₀ (C) = 1,4550041 LIM INF = 2 <t< th=""><th></th><th>7</th><th></th><th>71</th><th></th><th>67</th><th></th></t<>		7		71		67		
1 1,833 1,845 0,013 1,839 0,007 0,000047 2 1,851 1,851 0,000 1,851 0,000 0,000000 3 1,820 1,851 0,032 1,835 0,017 0,000299 4 1,826 1,839 0,013 1,832 0,007 0,000049 5 1,826 1,845 0,019 1,836 0,010 0,000107 6 1,845 1,833 0,013 1,839 0,007 0,000047 7 1,851 1,826 0,025 1,839 0,014 0,000188 ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR ESTIMACIÓN DE LA INCERTIDUMBRE EXPANDIDA INCERTIDUMBRE			P	ROCESAMIENTO DE LOS	S DATOS			
2 1,851 1,851 0,000 1,851 0,000 0,000000 3 1,820 1,851 0,032 1,835 0,017 0,000299 4 1,826 1,839 0,013 1,832 0,007 0,000049 5 1,826 1,845 0,019 1,836 0,010 0,000107 6 1,845 1,833 0,013 1,839 0,007 0,000047 7 1,851 1,826 0,025 1,839 0,014 0,000188 ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR **ECHATIVA* (Pt) = ** **DESVIACIÓN ESTÁNDAR* RELATIVA* (Pt) = ** **INCERTIDUMBRE** **ESTIMACIÓN DE LA INCERTIDUMBRE EXPANDIDA** **INCERTIDUMBRE** **ESTANDAR*: U = K.U **U = 0,164759 Con un nivel de confianza del 95% **U = 0,164759 Incertidumbre relativa **EXPRESIÓN DEL RESULTADO** ** **EXPRESIÓN DEL RESULTADO** ** **LIM INF = 2 ** ** **LIM INF = 2 ** ** **LIM INF = 2 ** ** ** ** ** ** ** ** **	CORRIDAS	Log ₁₀ (D ₁)	Log ₁₀ (D ₂)	$Log_{10}(D_1) - Log_{10}(D_2)$	Valor medio	Dif Rel	(Dif Rel) ²	
3 1,820 1,851 0,032 1,835 0,017 0,000299 4 1,826 1,839 0,013 1,832 0,007 0,000049 5 1,826 1,845 0,019 1,836 0,010 0,000107 6 1,845 1,833 0,013 1,839 0,007 0,000047 7 1,851 1,826 0,025 1,839 0,014 0,000188 ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR DESVIACIÓN ESTÁNDAR RELATIVA (PI) = DESVIACIÓN ESTÁNDAR: U = K.U U = 0,164759 Con un nivel de confianza del 95% U = 16,475879 Incertidumbre relativa EXPRESIÓN DEL RESULTADO C = 0,014500 LOG _{TQ} (C) = 1,450041 LOG (C) ± U*Log10(c) LIM INF = 2 LIM SUP = 2 LIM SUP = 2 LIM INF = 65 UFC	1	1,833	1,845	0,013	1,839	0,007	0,000047	
4 1,826 1,839 0,013 1,832 0,007 0,00049 5 1,826 1,845 0,019 1,836 0,010 0,000107 6 1,845 1,833 0,013 1,839 0,007 0,000047 7 1,851 1,826 0,025 1,839 0,014 0,000188 ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR DESVIACIÓN ESTÁNDAR RELATIVA (Ph) =	2	1,851	1,851	0,000	1,851	0,000	0,000000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1,820	1,851	0,032	1,835	0,017	0,000299	
6 1,845 1,833 0,013 1,839 0,007 0,000047 7 1,851 1,826 0,025 1,839 0,014 0,000188 ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR	4	1,826	1,839	0,013	1,832	0,007	0,000049	
7 1,851 1,826 0,025 1,839 0,014 0,000188 ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR $\Sigma(\text{DIF REL})^2 = $	5	1,826	1,845	0,019	1,836	0,010	0,000107	
ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR $\Sigma(DIFREL)^2 = 0,000736 \qquad \qquad$	6	1,845	1,833	0,013	1,839	0,007	0,000047	
$\Sigma(DIF REL)^2 =$ $0,000736$ Incertidumbre estándar: $RSD_{(Pi)} = u$ DESVIACIÓN ESTÁNDAR RELATIVA $_{(Pi)} =$ $0,007250$ $u =$ $0,007250$ ESTIMACIÓN DE LA INCERTIDUMBRE EXPANDIDAINCERTIDUMBRE ESTANDAR: $U = K.U$ $K =$ $U =$ <th>7</th> <th>1,851</th> <th>1,826</th> <th>0,025</th> <th>1,839</th> <th>0,014</th> <th>0,000188</th>	7	1,851	1,826	0,025	1,839	0,014	0,000188	
	ESTIMACIÓN DE LA INCERTIDUMBRE ESTANDAR							
DESVIACIÓN ESTÁNDAR RELATIVA $_{(Pi)}$ = $0,007250$ $u = 0,007250$ ESTIMACIÓN DE LA INCERTIDUMBRE EXPANDIDA INCERTIDUMBRE ESTANDAR: $U = 0,164759$ Con un nivel de confianza del 95% $U = 0,0164759$ Uncertidumbre relativa EXPRESIÓN DEL RESULTADO C = $0,014500$ LOG $_{10}$ (C) = $1,450041$ IM = $Log10(c) \pm U^*Log10(c)$ LIM $INF = 2$ LIM $INF = 3$	Incertidumbre estándar:							
RELATIVA (PI) = 0,007250 $u = 0,007250$ ESTIMACIÓN DE LA INCERTIDUMBRE EXPANDIDA INCERTIDUMBRE ESTANDAR: $U = 0,164759$ Con un nivel de confianza del 95% $U = 0,164759$ Incertidumbre relativa EXPRESIÓN DEL RESULTADO $C = 0,014500$ LOG ₁₀ (C) = 1,450041 IM = $0,014500$ LIM INF = 0.0000 LIM INF = 0.00000 LIM SUP = 0.000000 LIM SUP = 0.0000000 LIM INF = 0.0000000 LIM INF = 0.00000000	Σ(DII	F REL) ² =	0,000	$0,000736$ $RSD_{(PI)} = u$				
RELATIVA (PI) = 0,007250 $u = 0,007250$ ESTIMACIÓN DE LA INCERTIDUMBRE EXPANDIDA INCERTIDUMBRE ESTANDAR: $U = 0,164759$ Con un nivel de confianza del 95% $U = 0,164759$ Incertidumbre relativa EXPRESIÓN DEL RESULTADO $C = 0,014500$ LOG ₁₀ (C) = 1,450041 IM = $0,014500$ LIM INF = 0.0000 LIM INF = 0.00000 LIM SUP = 0.000000 LIM SUP = 0.0000000 LIM INF = 0.0000000 LIM INF = 0.00000000	DESVIAC	IÓN ESTÁNDAR						
ESTIMACIÓN DE LA INCERTIDUMBRE EXPANDIDA $k = 2,0$ U = 0,164759 $U = 16,475879$ Con un nivel de confianza del 95% $U = 16,475879$ Incertidumbre relativa EXPRESIÓN DEL RESULTADO $U = 1,450041$ $U =$				0,007250 u =		0,00725	0	
INCERTIDUMBRE ESTANDAR: $U = 0,164759$ $U = K.U$ $U_R = 16,475879$ $U = 0,014500$ $C = 0,014500$ $LOG_{10}(C) = 1,450041$ $IM = Log10(c) \pm U^*Log10(c)$ $LIM INF = 2$ $LIM SUP = 2$ $LIM SUP = 2$ $LIM INF = 65$ UFC		V 7	ESTIMACI	ÓN DE LA INCERTIDUM	BRE EXPANDIDA			
INCERTIDUMBRE ESTANDAR: $U = K.U$ $U = 0,164759$ $U = K.U$ $U_R = 16,475879$ $EXPRESIÓN DEL RESULTADO$ $C = 0,014500$ $LOG_{10}(C) = 1,450041$ $IM = Log10(c) \pm U^*Log10(c)$ $LIM INF = 2$ $LIM SUP = 2$ $LIM SUP = 2$ $LIM INF = 65$ UFC								
U = K.U del 95% U _R = 16,475879 Incertidumbre relativa EXPRESIÓN DEL RESULTADO C = 0,014500 0,014500 LOG ₁₀ (C) = 1,450041 1,450041 IM = $Log10(c) \pm U^*Log10(c)$ 2 LIM INF = 2 2 LIM SUP = 2 2 LIM INF = 65 UFC						Con un nivel de confianza		
$U_R =$ 16,475879 Incertidumbre relativa EXPRESIÓN DEL RESULTADO C = 0,014500 LOG ₁₀ (C) = 1,450041 IM = $Log10(c) \pm U^*Log10(c)$ LIM INF = 2 LIM SUP = 2 LIM INF = 65 UFC	_			U = 0,16		.759 del 95%		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(U = K.U		$U_R = 16,475879$				
$LOG_{10}(C) = $			'	EXPRESIÓN DEL RESUI	LTADO			
$LOG_{10}(C) = \\ IM = \\ Log10(c) \pm U^*Log10(c) \\ \\ LIM INF = \\ 2 \\ LIM SUP = \\ 2 \\ LIM INF = \\ 65 \\ UFC$		C =	0	,014500				
IM = $Log10(c) \pm U^*Log10(c)$ LIM INF = 2 LIM SUP = 2 LIM INF = 65 UFC		I OG ₄₀ (C) =	1	,450041				
LIM INF = 2 $LIM SUP = 2$ $LIM INF = 65 UFC$	'			()				
LIM SUP = 2 LIM INF = 65 UFC		IM =	Log10					
LIM INF = 65 UFC								
					LIM SUP =	2		
LIM SUP = 73 UFC					LIM INF =	65	UFC	
					LIM SUP =	73	UFC	

INCERTIDUMBRE MEDIA OPERACIONAL

1	1	2				
1					intralaboratorio	logaritmos comunes
	68	70	1,83 3	1,84 5	0,000	0,003
2	71	71	1,851	1,851	0,000	0,003
3	66	71	1,820	1,851	0,001	0,003
4	67	69	1,826	1,839	0,000	0,003
5	67	70	1,826	1,845	0,000	0,003
6	70	68	1,845	1,833	0,000	0,003
7	71	67	1,851	1,826	0,000	0,003
8	122	145	2,086	2,161	0,003	0,001
9	125	164	2,097	2,215	0,007	0,001
10	125	143	2,097	2,155	0,002	0,001
11	125	137	2,097	2,137	0,001	0,001
12	118	120	2,072	2,079	0,000	0,002
13	121	120	2,083	2,079	0,000	0,002
14	115	138	2,061	2,140	0,003	0,001
15	27	24	1,431	1,380	0,001	0,007
16	29	27	1,462	1,431	0,000	0,007
17	33	28	1,519	1,447	0,003	0,006
18	26	32	1,415	1,505	0,004	0,007
19	25	24	1,398	1,380	0,000	0,008
20	23	24	1,362	1,380	0,000	0,008
21	22	28	1,342	1,447	0,005	0,008
22	15	20	1,176	1,301	0,008	0,011
23	14	10	1,146	1,000	0,011	0,016
24	10	14	1,000	1,146	0,011	0,016
25	11	13	1,041	1,114	0,003	0,016
26	13	16	1,114	1,204	0,004	0,013
27	17	16	1,230	1,204	0,000	0,011
28	19	16	1,279	1,204	0,003	0,011
		ertidumbre n		medio	0,002	0,006